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A man, viewed as a behaving system,
is quite simple. The apparent complexity

of his behaviour over time is largely
a reflection of the complexity of the environment

in which he finds himself.

Herbert A. Simon,
The Science of the Artificial,

MIT Press (1969).
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Abstract

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

History tools allow users to access past interactions kept in a history and to
incorporate them into the context of their current operations. Such tools appear in
various forms in many of today’s computing systems, but despite their prevalence,
they have received little attention as user support tools. This dissertation investi-
gates, through a series of studies, history–based, user support tools. The studies
focus on three primary factors influencing the utility of history–based, user sup-
port tools: design of history tools, support of a behavioural phenomenon in user
interactions, and mental and physical effort associated with using history tools.

Design of history tools strongly influences a user’s perception of their utility.
In surveying a wide collection of history tools, we identify seven independent uses
of the information with no single history tool supporting all seven uses. Based on
cognitive and behavioural considerations associated with the seven history uses,
we propose several kinds of history information and history functions that need to
be supported in new designs of history tools integrating all seven uses of history.

An exploratory study of the UNIX environment reveals that user interactions
exhibit a behavioural phenomenon, nominally referred to as locality. This is the
phenomenon where users repeatedly reference a small group of commands during
extended intervals of their session. We apply two concepts from computer memory
research (i.e., working sets and locality) to examine this behavioural artifact and
to propose a strategy for predicting repetitive opportunities and candidates. Our
studies reveal that users exhibit locality in only 31% of their sessions whereas
users repeat individual commands in 75% of their sessions. We also found that
history tool use occurs primarily in locality periods. Thus, history tools which
localize their prediction opportunities to locality periods can predict effectively the
reuse candidates.

Finally, the effort, mental and physical, associated with using a history tool
to expedite repetitive commands can influence a user’s decision to use history
tools. We analyze the human–information–processing operations involved in the
task of specifying a recurrent command for a given approach and design (assuming
that the command is fully generated and resides in the user’s working memory
and that users exhibit expert, error–free task performance behaviour). We find
that in most of the proposed history designs, users expend less physical effort at
the expense of more mental effort. The increased mental effort can be alleviated
by providing history tools which require simpler mental operations (e.g., working
memory retrievals and perceptual processing). Also, we find that the typing
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approach requires less mental effort at the expense of more physical effort.
Finally, despite the overhead associated with switching to the use of history tools,
users (with a typing speed of 55 wpm or less) do expend less overall effort to
specify recurrent commands (which have been generated and appear in working
memory) using history tools compared to typing from scratch.

The results of the three sets of studies provide insights into current history
tools and point favourably towards the use of history tools for user support, espe-
cially history tools that support the reuse of previous commands, but additional
research into history tool designs and usability factors is needed. Our studies
demonstrate the importance of considering various psychological and behavioural
factors and the importance of different grains of analysis.
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Earlier versions of the following chapters were published or presented in 5
conferences, 1 workshop, and 1 book.

Chapter 1 is an abridged version of the paper appearing in Lee (1992a).
Chapter 2 is a revised version of a paper appearing in Lee (1990b).
Chapter 3 is a substantially revised version of a paper appearing in Lee
(1990a).
Chapter 4 is a revised version of a paper appearing in Lee and Lochovsky
(1990a).
Chapter 5 is a revised version of a paper appearing in Lee and Lochovsky
(1990b).
The experiment in the section entitled "Accuracy of the Cognitive Models’
Predictions" in Chapter 6 is a longer version of a short talk appearing in
Lee (1992b).
The visual search experiment in Appendix D is a longer version of a poster
appearing in Lee and Lochovsky (1991).
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Chapter 1

Introduction

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

The field of user support is concerned with how to support user-computer
interactions. Past efforts to address this problem have taken one of three
approaches: user-interface design, run-time support, and user instruction. User-
interface design stresses the importance of designing usable interfaces because
usability is an important user support concern. Run-time support focuses on the
provision of run-time tools and resources, computer-based and non-computer-
based, because user interactions are complex and difficult and user-interface
issues are not always resolved at design time. Through run-time support,
designers carry over their concern for users from user-interface design to the use
of computer systems. A third approach involves developing methodologies for
instructing and training users on the use of computer systems. The premise is
that user-computer interactions are enhanced with user instructions.

In this thesis, we are concerned mainly with the provision of run-time sup-
port. Past efforts have concentrated on three aspects of user interactions: user-
centered, task-centered, and interaction-centered views. The user-centered view is
concerned with issues related to user intentions and actions and in particular, cog-
nitive, behavioural, and social issues associated with user-computer interactions.
The task-centered view is concerned with issues related to task analysis, task
description, and task-to-tool mappings [Croft, 1984]. The interaction-centered view
is concerned with issues related to needs and protocols for effective communication
[Hayes, Ball, & Reddy, 1981; Nickerson, 1976; Taylor, 1988a, 1988b; Thimbleby,
1980]. While the distinction between interaction-centered and user-centered views
and between interaction-centered and task-centered views may not be clear cut,
the distinction between user-centered and task-centered views is clear. In the
task-centered view, the task drives the design of an interface while in the user-
centered view, user needs drive the design of an interface and interface needs
drive the design of the rest of a system [Norman, 1986].

Since we cannot hope to address all of the various user support concerns, our
discussion focuses on user-centered, computer-based, run-time user support.
Furthermore, our treatment of this aspect of user support is biased towards cogni-
tive and behavioural issues related to the provision of tools and resources for
smoothly integrating computing with user tasks. However, this is not to suggest
that other issues like implementation, social and organizational context of comput-
ing, theory of task domains, and training of users are unimportant.
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This chapter presents our motivations for focusing on user-centered,
computer-based, run-time user support. Then, we examine three important con-
siderations for user support. They highlight the multiplicity of concerns and chal-
lenges that underlie attempts to provide user support. Finally, we propose that
history, and tools based on history, can address many of these user support con-
cerns and challenges. Several indications of the value of history tools are
presented followed by a problem statement and brief overview of the dissertation.

Motivation
Computer users can encounter difficulties in interacting with a computer sys-

tem and therefore the system must enable users to deal with and manage these
difficulties as they arise [Brown & Newman, 1985; Quinn & Russell, 1986]. There
are three reasons why a user-centered, computer-based, run-time support
approach is important for dealing with such difficulties: diverse user knowledge
and experience, task complexity, and interaction barriers.

First, support needs to be user-centered because users have diverse computer
knowledge and experience. Thus, system designers need to provide user-centered
tools and resources that will address individual user needs and concerns. Second,
support needs to be computer-based because users perform complex computing
tasks. Thus, system designers need to provide computer-based tools and resources
that will allow them to focus on conceptual and difficult aspects of performing such
tasks and to accomplish them easily [Card, 1989; Gasser, 1986; Rissland, 1984].
Finally, support needs to be run-time because the powerful and sophisticated tools
in computer systems present formidable barriers to a user’s understanding and
use of these systems [Hayes, Ball, & Reddy, 1981; Winograd, 1973]. Thus, system
designers need to provide run-time tools and resources to help users overcome the
‘‘communication’’ and ‘‘utility’’ barriers as they arise.

Considerations in the Design of User Support
In order to provide effective run-time assistance to users, designers need to be

aware of and to understand users, their behaviours, and their interactions with
computers. A literature review reveals three important considerations:

g Users are individuals.
g User behaviours are variable.
g User-computer interactions are complex and difficult.

Users are Individuals
Studies of user task performance and system usage consistently show that

user behaviour in user-computer interactions is non-homogeneous [Boies, 1974;
Card, Moran, & Newell, 1983; Carey, 1982; Egan, 1988; Greenberg & Witten,
1988a; Hanson, Kraut, & Farber, 1984; Potosnak, Hayes, Rosson, Schneider, &
Whiteside, 1986]. User classification schemes have been proposed to illustrate
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and to characterize individual differences and traits [Carey, 1982; Norman, 1984;
Potosnak, Hayes, Rosson, Schneider, & Whiteside, 1986]. Each class represents
an interpretation of user behaviour and a characterization of distinctive user
differences (e.g., cognitive factors, preferences, frequency of system use). These
classifications are not absolute as certain implicit generalizations and assump-
tions about individuals are made.

User Behaviours are Variable
Studies reveal that user behaviours vary from situation to situation. Such

behavioural variability is supported by research into learning, human cognition,
interaction gulfs, and engagement.

Learning research reveals that, with training and exposure to a task, a user’s
skill evolves from a problem-solving stage to a procedural stage and then to an
automatic stage [Anderson, 1982; Card, Moran, & Newell, 1983; Rasmussen,
1983]. In unfamiliar stages of task performance, users with minimal task
knowledge rely on heuristic strategies to search and navigate a problem space (i.e.,
problem solve). As user skills develop, operator sequences for moving from prob-
lem state to problem state are more predictable and are integrated and composed
into debugged cognitive structures, known as mental schema. Mental schema
knowledge allows a problem solver to recognize a problem state and its associated
operators. It is encoded as procedural rules and then, with further refinement,
human behaviour can be described as if these rules are collapsed into methods
controlled by a single rule. As tasks become well-practiced, actions become
automatic, and users are unable to describe the rules for controlling their task per-
formance. Depending on which stage users are at, their behaviour varies from one
task exposure to another.

Human information processing resources and capacities constrain human
cognition [Card, Moran, & Newell, 1986; Lindsay & Norman, 1977]. Such con-
straints encourage an intuitive preference for mental processing strategies that
lead to sequences of simple operations [Rasmussen, 1983]. Strategies may involve
fitting task activities to system functions, optimizing for transfer of previous task
results, and minimizing the need for new information. These constraints, coupled
with different human information processing demands imposed by different situa-
tions, lead to variability in observed user behaviours.

Gulfs between a person’s goals and knowledge and a system’s requirements
are qualified in terms of two distances: semantic and articulatory distances
[Hutchins, Hollan, & Norman, 1986; Norman, 1986]. Semantic distance is the dis-
tance between how users think of their tasks and the semantics of the interface
language. Articulatory distance is the distance between the semantics of the inter-
face language and the physical form of the interface language. The less natural
the relationship between the two ends of a distance, the less natural the formula-
tion or articulation of a user intention or user action and the less natural the
interpretation or evaluation of system semantics or system response. Hence, users
have more problems and their behaviour is more variable.

Finally, engagement is the qualitative feeling of manipulating interface
objects [Hutchins, Hollan, & Norman, 1986]. Variability in user behaviour arises
depending on how users engage a system. There are situations where user actions
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and objects may be described precisely with an abstraction (i.e., indirect engage-
ment) rather than direct manipulation (i.e., direct engagement) or vice versa and
as a result, differences in user behaviour are observed. Current interfaces do not
effectively integrate both direct and indirect engagement.

User-Computer Interactions are Complex and Difficult
User-computer interactions do not always proceed in a straightforward

manner. User interface and task complexities, individual differences, and
behavioural variability often make on-going user interactions complex and
difficult. Behavioural studies have shown that user interactions include four
kinds of activities: multi-tasking, improvisation, repetition, and error correction.

Studies have found that user activities do not always proceed in a serial and
uninterrupted fashion. Users often engage in a number of activities by either pro-
cessing them concurrently or digressing and switching back to an activity [Ban-
non, Cypher, Greenspan, & Monty, 1983; Cypher, 1986; Greenberg & Witten,
1985; Henderson & Card, 1986a; Stephenson, 1973]. In switching amongst several
parallel activities, users internalize complex sequences of parallel activities to run
tasks sequentially on a computer. Factors such as limited resources and struc-
tural and functional mismatches between human and computer systems, extent of
control of mental processing, nature of tasks (e.g., problematic, routine, well-
defined), and human characteristics affect a user’s ability to perform multiple
activities [Cypher, 1986; Gasser, 1986; Lee, 1992a; Lindsay & Norman, 1977;
Miyata & Norman, 1986; Norman & Shallice, 1986; Suchman, 1983].

According to Suchman (1987), user actions are situated: all activities take
place in some specific on-going concrete situation that demands immediate atten-
tion. Real situations are typically rife with uncertainties, complexities, and con-
tingencies. They arise for any number of reasons including misalignment between
computing and work processes, work contingencies, system design restrictions,
poor functionality, skill level, and nature of tasks [Gasser, 1986]. Users must con-
tinually evaluate and decide what to do next, utilizing resources from the immedi-
ate surroundings; they need to improvise [Agre & Chapman, 1990]. Thus, user
actions may be systematic but they are not planned in the traditional sense.

Studies of computing and non-computing behaviours observed repetition in
user activities. Greenberg and Witten (1988b), Hanson, Kraut, and Farber (1984)
and Krishnamurthy (1987) reported that a few commands in a user session consti-
tute a large percentage of the commands issued. Greenberg (1988b) also noted
repetitive behaviours in the form of replaying favourite songs, looking up informa-
tion in manuals several times, favouring certain physical tools or cooking recipes.
Recurrent activities arise for several reasons: problematic tasks necessitate a trial
and error process; tasks are routine and frequent (e.g., users invoke a window sys-
tem every time they log in) or inherently repetitive (e.g., deleting files in different
directories); and a number of tasks are performed using the same actions because
less effort is required or poorly designed systems force users to do so.

Finally, users are fallible even in a well-designed computer system. Human
error falls into two categories: mistakes and slips [Norman, 1981; Norman, 1983].
Mistakes are errors resulting from the formulation of wrong intentions while slips
are errors resulting from the execution of inappropriate actions for an intention.
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Mistakes include errors associated with faulty decision making and misunder-
standings, misinterpretations, or misdiagnosis of situations while using a system
[Norman, 1983]. Examples include mistaking a system state (i.e., mode errors) or
specifying an incomplete or ambiguous intention (i.e., description errors). Slips
are attributed to unintentional activation of actions, false activation of actions, or
failure to trigger correctly selected actions.

Implications for User Support Endeavours
The preceding observations about users, their behaviour, and their interac-

tions with computers highlight several important concerns for the provision of
user support. No single mechanism is available to address all the concerns but
there are three basic user support capabilities that are desirable and are discussed
briefly in this section: user models, adaptation, and facilitation [Lee, 1992a].

A user model contains such information as a user’s preferences, knowledge,
characteristics, intentions, behaviours, and performance capabilities [Benyon,
1984; Chin, 1986; Quinn & Russell, 1986; Rich, 1983; Self, 1974; Sleeman, 1985;
Witten, Greenberg, & Cleary, 1983]. The user information allows the interface to
be aware of individual user needs and requirements. As a result, a system can
better accommodate individual differences. Adaptation allows interfaces to adapt
system behaviours to changing user needs and to reduce the amount of user effort
that is expended. Therefore, a system can better accommodate variable user
behaviours. Facilitation eases the cognitive and physical overhead associated with
user interactions and ensures that user interactions proceed relatively smoothly.
It is an important component of computer systems because it addresses concerns
related to the support of complex and difficult user interactions.

History Tools : A Proposed User-Support Candidate
Computer-based user support is available, generally, in the form of help sys-

tems [Elkerton, 1988; Lee, 1992a]. This thesis proposes a different user support
facility known as a history tool. A history (also known as user history) is a log of a
user’s past interactions. A history tool permits users to refer to their history and
to incorporate parts of their history into the context of their current interactions.
There are several reasons why history-based, user support tools are important and
merit investigation:

g User support capabilities rely on history information.
g Humans draw heavily from past experiences.
g History-cued problem solving facilitates learning.
g History information helps users cope with improvisation.
g History tools relieve cognitive and physical burdens.
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User Support Capabilities Rely on History Information
A history is a valuable source of information for the three basic user support

capabilities (i.e., user models, adaptation, and facilitation). It contains descrip-
tive, interpretive, and functional information. Descriptive information is funda-
mental to the operation of user models. It includes, for example, preferences, style
of interaction, user skill level, and task knowledge. Interpretive information helps
users to diagnose, explain, and understand problematic situations. It includes, for
example, errors, feedback, and diagnostics. Functional information provides users
with the means to adapt system behaviour and to facilitate user-computer interac-
tions. It includes, for example, information about how users interact with a sys-
tem, how they adapt to a system, and how a system facilitates the execution of
user tasks. The interpretive and functional types of information are useful for
adaptation and facilitation.

Systems have used history information as a crucial element of user support
tools. However, these efforts have focused on identifying the functionality of his-
tory tools rather than characterizing the types of history information and the uses
of history information. We argue that such characterizations are important as
they reveal the value of and the range of uses of history information.

Humans Draw Heavily from Past Experiences
Humans draw heavily from their vast store of knowledge and experiences.

This human characteristic is exploited by two different machine learning research
efforts. In case-based reasoning, a reasoner uses memory of past cases within the
same domain, sharing similarities to the current situation, to interpret or to solve
a new case [Rissland, Kolodner, & Waltz, 1989]. Reasoning by analogy, like case-
based reasoning, uses analogous situations, but not necessarily from the same
domain, as the basis for reasoning about a problem.

In the user support context, a history contains information about past
interactions. This information can be used to improve the quality and efficiency of
user interactions. Users can avoid past errors, forego fruitless approaches
attempted previously, or bootstrap onto a previous solution and thereby focus
quickly on important aspects of a solution which requires user attention.

History-Cued Problem Solving Facilitates Learning
Studies of problem-solving mechanisms reveal that the cognitive processes

required for problem solving and learning do not overlap sufficiently for learning
to occur during problem-solving [Sweller, 1988]. In fact, Sweller (1988) suggests
that a means-ends problem-solving strategy interferes with learning by preventing
problem solvers from learning essential aspects of a problem’s structure. A
means-ends strategy involves working backward iteratively from a goal state by
setting subgoal states until the problem state is reached. It is extremely effective
for problems in which problem states can be specified as goals because it
encourages a problem-solver to attend to differences between a current problem
state and a goal state. However, such selective attention may totally ignore rela-
tionships between a problem state, its particular category of problem states, and
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the particular operators. Thus, when problem solvers devote full attention to a
goal, they may exclude those features of a problem necessary for learning.

Unlike a means-ends strategy, a history-cued strategy works with goal-
specific and non-goal-specific problems (e.g., concept-discovery tasks). It uses
actions from previous problem-solving episodes to generate actions for the current
problem-solving episode. Sweller, Mawer, and Howe (1982) propose that a
history-cued strategy makes use of rule induction, a primary means of knowledge
transfer. Thus, a history-cued strategy could facilitate problem solving as well as
learning.

A series of studies examined the issue of knowledge transfer using goal-
specific problems solvable by either strategy: a rule-induction procedure (i.e.,
history-cued) or a non-rule-induction procedure (i.e., means-ends) [Sweller,
Mawer, & Howe, 1982]. In situations where subjects chose a means-ends strategy,
there was a comparative lack of transfer due to a failure to induce a rule. On the
other hand, when subjects used a history-cued strategy, large performance
changes on transfer tasks were observed. Insofar as this transfer indicated exper-
tise or knowledge of a problem structure, use of a history-cued strategy resulted in
more rapid acquisition of knowledge. Similar results were obtained in experi-
ments where problem-solvers were presented with problems that had been
modified to eliminate specific goals; problem-solving expertise was enhanced more
rapidly (experiment referenced in [Sweller, 1988]).

These findings suggest that a history-based, user support tool may encourage
the use of a history-cued problem-solving strategy rather than a means-ends stra-
tegy and thus, facilitate rule induction and knowledge transfer. Furthermore,
such a tool may indirectly result in more rapid acquisition of knowledge.

History Information Helps Users Cope with Improvisation
A history contains knowledge and actions relevant to the particulars of the

current situation (e.g., what actions were taken to arrive at the current situation).
It also contains information about a user’s evolving plan of action. However,
unlike the plans that users have in their heads, user histories reflect improvisa-
tions made to their mental plans in order to fit the current situation; user histories
are plans that are concrete, externalized, and directly accessible. Thus, they can
help users figure out how they dealt with uncertainties in the past by relating the
knowledge and actions needed during periods of improvisation. The relationship
between a user history and plans-as-communication1 and the ways in which a his-
tory can be enriched to support plans-as-communication are unexplored.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
1

Plans-as-communication relate the knowledge and actions needed during periods of
improvisation (i.e., situated actions) [Agre & Chapman, 1990]. A user history is an exam-
ple of plans-as-communication resource which helps users figure out how they dealt with
uncertainties in the past.
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History Tools Relieve Cognitive and Physical Burdens
User biases for the path of least cognitive resistance and repetition in user

behaviour suggest strong user preferences for what has worked in the past, even if
it is not an optimal approach. Users prefer to concentrate on conceptual
difficulties associated with task execution rather than the tedious, mundane, and
operational aspects of task execution. By reusing past approaches, users can
rapidly repeat actions that are unchanged in the current task. Furthermore, users
can benefit from improvements in their interactions as limited resources are more
accessible and more effectively used.

Problem Statement
My thesis is that history, and tools based on history, can enhance user sup-

port. However, despite the potential benefits that both offer, very little attention
has been focused on either and on their prospects for user support. In fact, there
is little empirical evidence to illustrate the effectiveness of history tools and few
studies and design efforts concerning history-based user support.

This dissertation investigates, through a series of studies, a number of
specific questions related to the composition of a history and the prospects of his-
tory tools for user support. The dissertation explores deficiencies, potentials, and
constraints of history and history tools. Each study poses specific questions con-
cerning the effectiveness of history tools for user support. The studies examine
the usefulness of current history tools, the extent of history-tool usage, the user
interaction behaviours that can benefit from history tools, the ways that history
tools can exploit such user behaviours, and the mental and physical costs associ-
ated with using history tools.

Dissertation Roadmap
The dissertation is divided into three parts. The first part, Chapters 2 and 3,

characterizes the uses of current history tools and proposes requirements and
options for enhancing the design of history tools. The second part, Chapters 4 and
5, describes an empirical observation and analysis of actual, everyday, natural
user interactions with UNIX and UNIX history tools. The third part, Chapter 6,
examines the effort involved in issuing repetitive user actions.

Chapter 2 focuses on how current history-like tools can enhance user interac-
tions as well as the current state of this support. Various basic uses of a user his-
tory and their manifestations are characterized. System capabilities provided to
support these uses are critiqued. Then, a number of existing systems are assessed
in terms of the degree to which they support and integrate these uses.

Chapter 3 examines the needs and requirements for history tools which
integrate the various uses of history. The kinds of history information and the
kinds of functionalities that a history tool should support are proposed.

Chapter 4 is concerned with user interactions supported by history tools and
user interactions with history tool usage. The findings from an exploratory study
conducted with these concerns in mind are presented.
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Chapter 5 examines in a formal way the user behaviour – user repetition of
user actions – found in Chapter 4 and Greenberg and Witten (1988b)’s study.
This behaviour is akin to behaviour observed in a program’s references to com-
puter memory. We adopt the concept that describes such program reference
behaviours as a characterization of the repetition of user actions in our analysis of
user interactions within a UNIX environment. Findings from a number of studies
examining questions concerning this user behaviour and its implications for
history-based, user support tools are presented.

Chapter 6 presents an analysis and comparison of the human information
processes involved in issuing a recurrent command. The mental and physical
effort involved in typing the recurrent command is compared to the mental and
physical effort involved in using history tools. The comparative measures are the
number and variety of different human information processing operations involved
in using each proposed design. Since our comparative analysis relies on the pred-
ictions generated by cognitive models, it is important that these predictions are
accurate. We conclude by examining the accuracy of these predictions.

Chapter 7 summarizes the dissertation and our research contributions. A
number of future research directions for history as a user support tool are dis-
cussed.
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Chapter 2

Uses of Information in a History

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

This chapter presents seven basic uses of the information in a user’s history
which can potentially enhance user-computer interactions. These uses are based
on a survey of a number of history-like tools available in current systems. A tax-
onomy is used to structure the presentation of these uses, their various manifesta-
tions, and their system support. In addition, the state of current history tools is
examined with respect to 1) user needs for each manifestation of history use and
on system capabilities provided in support of each and 2) support of these uses of
history in a number of general-purpose development systems.

Before proceeding, we need to clarify our use of several terms in this disserta-
tion. The terms history and user history are used interchangeably to refer to a col-
lection of information recorded from an earlier part of a user’s interactions. The
term script refers to a sequence of user actions to be carried out [Archer, Conway,
& Schneider, 1984]. If in the course of script recording, user actions are actually
performed, then the recording (aside from being a script) is part of a history. A
future instantiation of a script is a future part of a history. Viewing a user’s
interactions with respect to an activity timeline, actions and objects that took part
earlier are candidates for a history and actions and objects that are to be per-
formed in the future are candidates for a future part of a history.

Taxonomy
There have been two previous surveys of history tools. Greenberg (1988b)

examined different interaction styles in history tools for facilitating the reuse of
computer tools. Linxi and Habermann (1986) examined different uses of the infor-
mation in a history to facilitate the software development process. Like Greenberg
(1988b), we are interested in how history tools facilitate user interactions but like
Linxi and Habermann (1986), our survey enumerates different uses of history
information. Our survey results include uses of history information that are not
evident in the software development task domain. Furthermore, we partition our
survey results into a taxonomy of uses of history. Each use of history is an abstrac-
tion of a designer’s conception of a user’s usage intention (e.g., reuse or error
recovery).
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Our taxonomy characterizes each use of history in terms of two variables: type
and system support. Examples of systems are provided for the various system sup-
port associated with a particular type of history use (see Table 1).

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Uses Type System Support Example Systemsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

reuse a script CONMAN [Haeberli, 1986]
literally PLAYERPIANO [Bier & Freedman, 1985]iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

a previous list of accepted operations
descriptive manipulationinteraction

with possible
C Shell [Joy, 1980], INTERLISP-D USE, REDO
[Teitelman & Masinter, 1981]

direct manipulationmodifications KORN Shell [Korn, 1983], HCR HI [HCR
Corporation, 1987], MINIT [Barnes & Bovey,
1986], TC Shell [Ellis, Greer, Placeway, &
Zachariassen, 1987], INTERLISP-D FIX [Teitelman
& Masinter, 1981]iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

display’s contents CEDAR [Teitelman, 1985], EMACS [Stallman,
1981], SMALLTALK-80 [Goldberg, 1984],
SUNTOOLS [SUN Microsystems, Inc., 1986]iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

operations as macro
a functional history macro ALOE [Linxi & Habermann, 1986]
group recorded macro EMACS [Stallman, 1981], HP NEWWAVE AGENT

[Stearns, 1989], MACROS BY EXAMPLE [Olsen &
Dance, 1988], MEXEC [Ash, 1981a], TEMPO
[Whitby, 1986], QUICKEYS [Bobker, 1988]iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

programming
with example SMALLSTAR [Halbert, 1984]
by example METAMOUSE [Maulsby, Witten, & Kittlitz, 1989]

PERIDOT [Myers & Buxton, 1986]iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
inter- relate previous I/O
referential I/O to current input SYMBOLICS [McMahon, 1987]
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
error system restore system state SMALLTALK-80 [Goldberg, 1984]
recovery recovery undo erroneous operations US&R [Vitter, 1984], EMACS [Stallman, 1981],

CHIMERA [Kurlander & Feiner, 1988]iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
command descriptive manipulation C Shell [Joy, 1980]

correction direct manipulation INTERLISP-D HISTMENU & FIX [Teitelman &
Masinter, 1981], KORN Shell [Korn, 1983], TC
Shell [Ellis, Greer, Placeway, & Zachariassen,
1987]iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

navigation information spaceswhere am I,
where did I

come from,
where have

HYPERCARD RECENT [Goodman, 1987], TIMELINE
PAGE [Feiner, Nagy, & van Dam, 1982], WHAT,
WHERE, WHENCE [Engel, Andriessen, & Schmitz,
1983]iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

activity spacesI been SITES, MODES, and TRAILS [Nievergelt &
Weydert, 1980], Room Stack in ROOM MODEL
[Chan, 1984], Back Door in ROOMS [Card &
Henderson, 1987]iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

reminding user consultation SUNTOOLS [SUN Microsystems, Inc., 1986], JOBS
[Joy, 1980], SITES, MODES, and TRAILS
[Nievergelt & Weydert, 1980]iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

visual cues display user history INTERLISP-D HISTMENU [Teitelman & Masinter,
1981], SUNTOOLS [SUN Microsystems, Inc.,
1986], HYPERCARD RECENT [Goodman, 1987],
TIMELINE PAGE [Feiner, Nagy, & van Dam, 1982]iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

user
modelling

UKNOW [Desmarais & Pavel, 1987], UNIX
CONSULTANT [Chin, 1986], STEREOTYPE [ Rich,
1983]iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

default menu selectionuser interface SUNTOOLS [SUN Microsystems, Inc., 1986]
adaptation predict next action REACTIVE KEYBOARD [Witten, Cleary, & Darragh,

1983]iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 1: Taxonomy of uses of a history along with example systems.
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The type variable characterizes different manifestations of a usage intention.
To illustrate, reuse may be manifested as the literal reuse of a group of user
actions – reuse a script literally – or as the reuse of an object/action with some
modifications – reuse a previous interaction with possible modifications. Each
manifestation suggests a set of user needs. For example, users who want to reuse
operations as a functional group need to group several operations together for
invocation as a unit.

The system support variable characterizes system capabilities that are pro-
vided to meet certain user needs of a particular type of history use. System sup-
port varies in terms of the sophistication of the user support provided and reflects
the amount of user effort required to realize the particular type of use of history.
For example, some designers provide a macro facility to support reuse operations
as a functional group, while other designers provide an example programming
facility. A macro allows users to associate a sequence of actions to a single action
while an example programming facility allows users to generalize an example exe-
cution trace to a program.

Our taxonomy is the result of a survey of current history-like tools that
directly enhance a user’s interactions with a system. While one may envision dif-
ferent types of uses of history to support user interactions, the taxonomy only con-
siders those supported by existing systems and those uses of history that fall
inside the scope of interest. For example, user traces for analyzing the design of a
system are not considered a direct user support capability.

The taxonomy characterizes the value of the information maintained in a his-
tory in terms of seven basic usage intentions. The taxonomy provides a framework
for presenting and critiquing user needs and system support for a particular type
of use of history. Furthermore, the usage intentions and their various manifesta-
tions and implementations provide a context for examining how well current
general-purpose systems support these seven uses of history. Finally, the taxon-
omy provides a structure for thinking about the kinds of information and functions
required to use such history information. The next chapter presents the insights
into design requirements for multi-use history tools extracted from the taxonomy.

History for Reuse
Currently, the most common use of a history tool is to reuse and possibly

modify a history item to save keystrokes and/or mouse strokes [Linxi & Haber-
mann, 1986]. Different types of reuse are supported in current history tools.

Reuse a Script Literally
An early form of reuse originates from early scripting systems where the

same sequence of actions – recorded during the performance of an earlier task – is
replayed literally in the current context. The recording ‘‘pushes the buttons’’ as if
the user is there doing it – similar to a player piano. Since it is intended for situa-
tions in which the same operations are to be performed each and every time, this
type of reuse is both primitive and limited.



14 Chapter 2: Uses of Information in a Historyhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Reuse an Interaction with Possible Modifications
Earlier actions and objects may also be reused after some modifications. Sys-

tem support varies depending on the contents of a history: list of accepted opera-
tions or display’s contents.

A list of accepted operations (i.e., operations that were successfully executed),
is a user history kept by systems that model textual interactions as typescripts
(transcript of input and output). History items are selected and modified using
one of two interaction styles: descriptive manipulation or direct manipulation. A
descriptive manipulation style requires users to remember history items and his-
tory manipulation syntax and to combine a description of the history item to be
retrieved and the changes to be made to it into a single request (e.g., in C Shell
!−5:s/aa/bb recalls the 5th last command substituting the first occurrence of aa by
bb [Joy, 1980]). In a direct manipulation style, a user history is displayed to rem-
ind users of its contents and to allow them to point to the desired item (see Figure
1 for a sample display of the INTERLISP-D HISTMENU). Furthermore, history items
are first retrieved before they can be edited, thus simplifying select and modify
operations.

In systems where a user can copy and edit text appearing anywhere on the
display, the history is the display’s contents – accepted and unaccepted user inputs
and system responses (see Figure 2). The system uses the display for mediating
user-computer interactions, as well as, supporting history manipulation

Figure 1: INTERLISP-D’s HISTMENU displays a history of the commands
issued to the Executive in the form of a menu. The user may select the
items from the menu (the window entitled History Window).
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Figure 2: In SUNTOOLS, text may be selected, copied, and stuffed to the
input focus (i.e., cursor).

capabilities (e.g., display, selection, and modification) [Scofield, 1981; Young, Tay-
lor, & Troup, 1988]. Browsing, rather than querying, is the means of examining a
history. Such history manipulations are manual, but direct. Furthermore, a
broader notion of the constituents of a user history is supported by this approach
as compared to the typescript approach. More importantly, since the display is an
integral part of the interaction and browsing and editing are basic system func-
tionalities, no additional history machinery is required to support this particular
type of history use; it is available virtually for free.

Reuse Operations as a Functional Group
Users may reuse a set of operations as a compound command. Two kinds of

system support are available: macro and example programming facilities.
A macro facility permits a user to expand one instruction, command, keys-

troke, or mouse action into a sequence of user actions [Ash, 1981a]. Current
macro facilities in graphical systems do not usually permit users to view and edit
a macro. Two kinds of macros can be created using parts of a user history: history
macro and recorded macro [Linxi & Habermann, 1986]. A history macro is con-
structed by selecting previous operations from a user history while a recorded
macro is constructed by first entering a record mode, issuing the operations, and
then stopping the recording. Figure 3 illustrates an example construction of a
recorded macro in TEMPO [Whitby, 1986]. Unlike a history macro facility, where
users can create macros after issuing the relevant user operations, users creating
recorded macros must know in advance of issuing the relevant user operations
that they want to create a macro.

An example programming facility allows the user to construct a program from
a recording of the user actions used to perform an example task. The program is a
generalization of the example task history. Generalizations are made either by
the user – programming with example – or by the system – programming by exam-
ple [Myers, 1986]. A programming with example system provides the user with
programming and editing tools to generalize an example task history. Such aug-
mentations require a knowledge of, and competence in, programming. Figure 4
illustrates an example construction of a program in SMALLSTAR [Halbert, 1984].
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Figure 3: An example showing the construction of a TEMPO macro to
automatically format a blank MACWRITE document to standard settings
[Whitby, 1986].
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In the mail
form, the
Weight field
is examined to
determine
what should
be filled in the
Class field.

The initial
program after
the user
records the
actions
assuming that
the value in
the Weight
field is less
than 1 pound.
The user
selects the
statements
that will be in
the body of the
conditional to
be provided.

This shows the
completed
program with
the correct
conditional
test that the
user has
explicitly
added.

Figure 4: This SMALLSTAR program determines whether a customer’s
order is to be sent by first-class or fourth-class mail [Halbert, 1984]. If the
value in the Weight field of the mail is less than one pound, the order will
be sent by first-class mail, otherwise by fourth-class mail.
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In a programming by example system, the system makes the procedural inferences
and generalizations based on observations of user actions for a number of related
example tasks and knowledge about the specific domain (e.g., METAMOUSE
deduces graphical procedures from user execution traces in a drawing program
[Maulsby, Witten, & Kittlitz, 1989]).

History for Inter-referential I/O
In human dialogue, conversants make abbreviated references to objects and

actions that took place earlier in the dialogue [Draper, 1986; Reichman-Adar,
1986]. For example, two conversants have just attended a talk given by speaker A
and in their subsequent conversation about the talk, they use the referent, the
talk, to refer to the talk instead of using an elaborated reference. Similarly, two
persons (A and B) are examining the contents of a file directory on a computer sys-
tem and person A decides to relocate one of the files to another file directory and
then person B tells person A to do the same for another file; a request which per-
son A can interpret.

Inter-referential I/O is the computing analogue of this conversational capabil-
ity [Draper, 1986]. It allows the user’s input or the system’s output to reference
previous input and/or output available on the display. Current systems support
part of this capability. Specifically, users can make explicit the links between
actions and objects from an earlier part of the dialogue with those from the current
part of the dialogue (i.e., relate previous input/output to current input). This
enables users to make abbreviated associations which the system can disambigu-
ate and interpret. However, users are unable to relate previous input/output to
current output.

This use of history involves more than the simple reuse of parts of a user his-
tory, it allows a user to use abbreviated referents to relate pieces of past and
present interactions. Such tools are able to track and interpret these referents
because they share a common interaction context with the user much like the
shared context between two human conversants. Hence, user references can be
explicitly abbreviated and systems are able to disambiguate them.

The SYMBOLICS GENERA programming environment [McMahon, 1987]
highlights display objects that are suitable as inputs to the current user command
as the user moves the mouse over them (see Figure 5). This is made possible by a
type mechanism which relates application objects, including those on the display,
with the way they are to be used in particular user interface situations. Thus, the
system has a structured context and an abbreviated referencing scheme for linking
objects required in a user action with those on the display much like the shared
context and abbreviated referents available in human conversations.

History for Error Recovery
Error recovery tools allow users to recover from errors (e.g., typing). Two dif-

ferent types of error recovery are intended and supported: command correction
and system recovery. Command correction is simpler than system recovery.
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Figure 5: A user of the SYMBOLICS GENERA programming environment
[McMahon, 1987] lists the contents of the current directory and then
wishes to print out one of the files in this directory, using the Hardcopy
command. The objects on the display with a type (i.e., filename)
corresponding to the desired operand type for the Hardcopy command are
highlighted for selection as the user moves the cursor over them.

Command Correction
Occasionally, a user’s directive is rejected by the system because the directive

is incorrectly typed, incorrectly constructed, or inappropriately issued. In such
cases, command correction in the form of a FIX and REDO facility allows users to
correct the error before the directive is re-issued. In a descriptive manipulation
system, the facility provides a syntax for describing the modifications to be made to
the recalled history event (e.g., in C Shell, !!s/aa/bb substitutes the first occurrence
of aa with bb in the last command line issued). In a direct manipulation system,
the user copies the incorrect command directive and edits it before issuing it.

System Recovery
A system recovery tool allows users to recover from an erroneous change to

the system state. System recovery may be performed in one of two ways: restore
system state or undo erroneous operations.

System recovery may be performed by restoring the system state to a
snapshot of an earlier system state. SMALLTALK, which maintains snapshots as
well as records of changes made since the last snapshots, allows users to back-
track to an earlier system state and incrementally re-execute the changes [Gold-
berg, 1984]. The frequency and automaticity of making snapshots affect the ease
with which a user can restore a system state. Furthermore, a recovery process
that allows users to roll a restored system state forward to the point before the
error, using the record of the changes made between snapshots, may involve a lot
of manual changes, especially if snapshots are made infrequently.

Alternatively, users may undo an erroneous operation. Three different varia-
tions of such a facility exist [Vitter, 1984]. The most sophisticated form, known as
tree UNDO/REDO/SKIP, supports the following error recovery operations:
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g Remove erroneous commands
g Insert missing commands
g Substitute for erroneous commands
g Re-arrange the order of commands
g Change of heart (UNDO an UNDO)

A history contains the primitive user commands that have been issued and is
maintained as a tree-like data structure with a pointer variable. The commands,
UNDO, REDO, and SKIP, allow users to undo, redo, and skip over previously issued
commands by reorganizing the links in the tree-like history data structure. Figure
6 illustrates two sets of error recovery scenarios using these commands.

History for Navigation
In the course of using a computer system, users commonly ask questions like

where they are, where they just came from, and where they have been [Engel,
Andriessen, & Schmitz, 1983; Fitter, 1979; Nievergelt & Weydert, 1980]. The
information in a history helps users to answer these questions. Depending on
whether the user is navigating through an information space or activity space, a
system provides different navigation aids.

In navigating through large information spaces, users can become lost [Man-
tei, 1982]. Thus, such systems typically maintain system snapshots corresponding
to places a user visited, generally in chronological order (see Figure 7).

An activity space contains all user activities for a particular task. Users are
known to juggle several tasks by moving back and forth between activity spaces.
Occasionally, they lose track of their task switching [Bannon, Cypher, Greenspan,
& Monty, 1983; Card & Henderson, 1987; Cypher, 1986; Miyata & Norman, 1986].
ROOMS’ BACK DOOR [Card & Henderson, 1987] allows users to find out about the
last activity space they worked in while ROOM MODEL’s ROOM STACK [Chan, 1984]
lists the activity spaces the user visited in chronological order.

History for Reminding
The contents of a history may remind users of past knowledge and events. A

reminding is deliberate or spontaneous activation of past knowledge and experi-
ences and integration of that information into the current context [Ross, 1989]. A
deliberate reminding is supported by user consultation of a history while a spon-
taneous reminding is supported by visual cues in a history. The effectiveness with
which history tools support these two types of reminding depend largely on
whether the tools provide good visual cues as well as browsing and querying tools.

User Consultation
A deliberate reminding occurs when users query or consult their history to

find specific information. For example, users can examine their history:
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(A) A1 A2 ... An −1 An

last_done

The user realizes after issuing commands A1, A2, ...,An that commands B1
and B2 must be inserted between A1 and A2.

(B) A1 . . . . . . . A2 . . . . . . . ... . . . . . . . An −1 . . . . . . . An

last_done

Commands An, An −1, ...,A2 are undone (signified by dotted arrows).

(C) A1 . . . . . . . A2 . . . . . . . ... . . . . . . . An −1 . . . . . . . An

B1 B2 last_done

Commands B1 and B2 are issued. They appear as new nodes on a new
branch emanating from the node A1 with solid arrows.

(D) A1 . . . . . . . A2 ... An −1 An

B1 B2 last_done

Commands A2, ...,An are reinstated with n-1 REDOs. At this point, the user
realizes that the original sequence in step (A) is the correct sequence.

(E) A1 . . . . . . . A2 . . . . . . . ... . . . . . . . An −1 . . . . . . . An...... . . . .B1 . . . . . . . B2

last_done

The user undoes commands following A1.

(F) A1 A2 ... An −1 An...... . . . .B1 . . . . . . . B2 last_done

The user invokes REDO to redo A2 and then issues n-2 REDOs to redo
commands following A2.

Figure 6: (A) illustrates the state of the tree-like history data structure
before the user performs a sequence of changes (B) to (F) related to two
error recovery operations. (B) to (D) illustrates insertions of two missing
commands. (E) to (F) illustrates a change of heart; the user wants to undo
changes made in steps (B) to (D). Note, commands with dotted arrows are
undone while commands with solid arrows are issued.
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Touch the page or chapter that you would like to see

6

5

4

3

2

1

1:10:53 am 1:11:17 am 1:11:36 am 1:14:05 am 1:14:25 am

Diagnostics

Introduction

Travel

Subsystems

Maintenance

Figure 7: In Feiner, Nagy, and van Dam (1982)’s system, the last 6
examined pages are displayed chronologically as miniatures along their
parent chapter’s band. Selecting the miniature returns the user to that
page. Other pages in the timeline are displayed by selecting the scroll
arrow.

g to identify activities requiring attention or causing errors,
g to find relevant information from a previously related task, or
g to re-acquire the mental context for an interrupted activity.

An important design consideration is the user effort required to cull the infor-
mation from a history and the extent of the system support available to assist such
user efforts (e.g., query and browse). Without appropriate system support, this
type of history for reminding is limited and users must expend considerable effort
to extract the desired information.

Visual Cues
The display of a user history provides visual cues that trigger the spontane-

ous recall of relevant past information and activities that the user would otherwise
not remember. More importantly, reminders of past activities may lead a user to
consult the history in more detail; an activity which would never have been pur-
sued without the benefit of the reminding. While a history provides the informa-
tion, visual cues are crucial to the spontaneous activation of a reminding. Thus, it
is important to provide appropriate support for such visual cues and to develop
innovative and effective visual representation schemes. Current history-tool sup-
port for this history use consists largely of displaying portions of the user history
with little or no novel visual cues.
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History for User Modelling
A user history may contain information about a user’s skill level, task

knowledge, preferences, and personality traits. When systems infer such informa-
tion from a history to formulate user models, they are using history for user model-
ling [Chin, 1986; Desmarais & Pavel, 1987; Rich, 1983; Tyler & Treu, 1986]. The
user model may then be used to adapt system behaviour or to provide user-
tailored assistance. Figure 8 illustrates the kinds of information that UKNOW
infers from a user history [Desmarais & Pavel, 1987]. Systems use various tech-
niques to extract user information including deterministic and probabilistic
approaches, behaviour to structure transformations, and induction and knowledge
inferences. Current history tools for user modelling are limited by our under-
standing of user characteristics that differentiate individuals and by the tech-
niques for inferring user characteristics.

History for User Interface Adaptation
Using a user history and appropriate heuristics, a system can adapt system

behaviour to suit user needs, to predict user actions, or to infer user preferences
[Greenberg & Witten, 1988b]. A simple example is a menu system whose default
selection is the last menu selection. Another example is the REACTIVE KEYBOARD
which predicts what the user is going to type based on an adaptive model of the
text that has been typed previously [Witten, Cleary, & Darragh, 1983].

Like programming-by-example systems, user-interface-adaptation tools are
successful within specific application environments because they can exploit appli-
cation knowledge and use knowledge-based techniques to interpret user
behaviours. However, it is difficult to exploit application knowledge in a general-
purpose environment. Therefore, general-purpose history tools for user interface
adaptation have not fared as well. A more viable approach is to use knowledge-
based or probabilistic techniques to infer behavioural semantics from a user his-
tory (e.g., use rules to interpret observed behaviour [Quinn & Russell, 1986]).

Assessment
While the preceding section presented user needs and critiqued the level of

system support available for different types of uses of history, this section exam-
ines the uses of history that are directly supported by current systems. To facili-
tate this examination, a number of interactive systems are selected and assessed
in terms of how well they directly support all seven uses of history.

In order to provide a fair assessment of the state of current support for all
uses of history, only general-purpose development environments are considered
rather than special-purpose systems (e.g., text editors, information retrieval sys-
tems). Such environments support access to different applications (e.g., text edit-
ing, graphical drawing, electronic communication, programming, and managing
file systems). We picked six systems that supported some form of a history tool for
our assessment: ALOE, INTERLISP-D, MINIT, MPW, ROOMS, and SEED. Appendix A
provides a brief description of these systems.
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ls -l | more
emacs
grapher1.c
make grapher
grapher
graph.test
rm core
cdb grapher
man term
emacs
grapher3.c
make grapher
grapher
graph.test

History

1: cdb
2: emacs
2: grapher
1: ls
2: make
1: man
1: more
1: rm

Output of
cmdusage

S
Splot
bg
calc
cat
cc
cd
cdb
clear
compact
cp
date
du
emacs
f
fg
find
grep
head
history
kermit
kill
last
lpq

0
0
0
0
0
0
0
1
0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0

6
1
8
2
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1
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0
4
4
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4
2
5
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6
1
1
4
7
2
5
5
8

(.23)
(.06)
(.43)
(.17)
(.58)
(.13)
(.25)
(.05)
(.31)
(.53)
(.73)
(.39)
(.27)
(.25)
(.66)
(.33)
(.15)
(.15)
(.16)
(.40)
(.08)
(.43)
(.28)
(.51)

ls
ma
mail
make
man
mkdir
more
mv
ps
pushd
pwd
queue
rm
rmdir
screen
source
su
t
tail
troff
uncompact
vi
w
who
write

1
0
0
2
1
0
1
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0

434
2

54
2

18
370

24
41
42

6
54

4
68

3
3
3
5
1
2
0

17
3

57
2

10

(.17)
(.40)
(.64)
(.08)
(.59)
(.77)
(.50)
(.72)
(.64)
(.26)
(.67)
(.47)
(.59)
(.31)
(.43)
(.23)
(.27)
(.34)
(.21)
.58

(.58)
(.11)
(.56)
(.15)
(.43)

Output of UKNOW

lint

make

emacs

cdb

cc

Partial Knowledge Structure

Figure 8: UKNOW uses three techniques to deduce commands known by a
user: observation, inference, conditional probability [Desmarais & Pavel,
1987]. The first two techniques are based on analyses of a user history.
One metric, appearing in the first column of numbers in the UKNOW
output and in the ‘‘cmdusage’’ output, is the observed frequency of use of
each command. A second metric, appearing in the second column of
numbers in the UKNOW output and derived with the aid of a knowledge
structure, is the number of inferences about a user’s mastery of a given
command based on a user’s mastery of other commands. A knowledge
structure links sets of UNIX commands together with implication
relationships. In the partial knowledge structure, observation of lint will
result in one inference of mastery to both make and cc and in two
inferences to emacs. The third metric is the conditional probability that a
command is known by users given that their mastery of the command is
neither observed nor inferred (note that the first two metrics are 0).
Mastery of troff was determined using this conditional-probability
measurement technique (i.e., third metric is not enclosed by parentheses
to indicate that its value is derived from the conditional probability).

Results and Discussion
Each system is assessed in terms of whether it does or does not directly sup-

port each type of use of history. Table 2 summarizes the results of the assessment.
At a glance, no single system supports all seven uses of history. These systems
support some manifestation of reuse, error recovery, navigation and reminding.
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Table 2: Assessment of the uses of history information directly supported
by eight general-purpose environments. A g means the system does
support the use while ° means the system does not support the use.

History for user modelling, user interface adaptation, and inter-referential I/O are
not supported by any of the six systems. In order to support such uses of history,
a system must maintain application-specific information. Typically, such informa-
tion is not maintained by a general-purpose development environment.

History tools also need to support the various types of history uses; otherwise,
users may have to do a lot of fiddling to mimic these uses. For example, users who
want to reuse operations as a functional unit but are provided with a tool to reuse
a previous interaction with possible modifications must deal with each operation in
the set individually rather than the set as a whole. All six systems support reuse
of previous interactions with possible modifications, command correction, and deli-
berate reminding. Reminding is facilitated by history tools when these tools allow
users to consult their history visually. ALOE nd SEED are the only systems to sup-
port more than one type of history for reuse while MPW and ROOMS are the only
systems to support some type of history for navigation. All systems, except MINIT
and MPW, support both types of history for error recovery.

Current general-purpose history tools fail to support all seven basic history
uses as well as all types of history uses within the seven basic categories. This
failure is due to two factors: the kind of information maintained in a history and
the history capabilities provided. An in-depth discussion of both factors is
deferred until the next chapter.
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Concluding Remarks
This chapter presents three important observations about the current state of

history-like tools revealed by a survey of such tools. First, there are seven dif-
ferent basic reasons for using a history:
(1) History for reuse – Users repeat operations to avoid re-entering operands and

operations from scratch.
(2) History for inter-referential I/O – Users make abbreviated references to

objects and actions that took place in an earlier part of the dialogue.
(3) History for error recovery – Users edit an incorrect action or undo the effects of

an erroneous operation on a system.
(4) History for navigation – Users consult a history to find out where they have

been, where they have just come from, and where they are.
(5) History for reminding – Users are reminded of relevant information associated

with past activities.
(6) History for user modelling – Systems infer or derive information about users

by observing their activities in the course of their interactions.
(7) History for user interface adaptation – Systems use history as a source of

information to adapt automatically the interface behaviour to the user’s
needs.
Second, the taxonomy variables, type and system support, are used to charac-

terize a use of history. The type variable characterizes the various manifestations
of a basic usage intention. The system support variable characterizes capabilities
that system designers have provided to address particular user needs. Both vari-
ables are useful, respectively, for thinking about the user needs posed by a partic-
ular type of history use and for thinking about the degree of system sophistication
that is needed to support a particular type of history use.

Third, the taxonomy also provides a global context for assessing the extent to
which current systems support the seven uses of history listed in Table 1. The
assessment of six general-purpose development systems reveals that current
general-purpose history tools fail to support all seven uses of history. Thus, users
must either perform the desired operations manually or expend considerable effort
to make the desired use of history fit the supported use of history.

This chapter introduces concepts that are relevant to the discussion in the
next chapter concerning issues related to the design of history tools. Thus, the
taxonomy provides a vehicle for not only critiquing current history tool designs but
also thinking about the kinds of information a history tool should maintain and
the capabilities a history tool should support.
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Chapter 3

Cognitive and Behavioural Issues

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

According to Carroll, Kellogg, and Rosson (1991), current design practices in
human-computer interaction involve a ‘‘cycle of discovering, defining, and under-
standing tasks people want to do, need to do, or might do, and then designing,
developing, and analyzing artifacts to support tasks’’ (pg. 98). Such development
activities are circumscribed by a task-artifact cycle which refines, emulates, and
synthesizes HCI artifacts based on characterizations, analyses, and comprehen-
sion of tasks and artifacts during use. They suggest that the task-artifact cycle is
a manifest structure of HCI technology evolution in which tasks and artifacts co-
evolve: ‘‘a task implicitly sets requirements for the development of artifacts to sup-
port it; an artifact suggests possibilities and introduces constraints that often radi-
cally redefine the task for which the artifact was originally developed’’ (pg. 79).

The preceding and current analyses are part of an iteration through such a
task-artifact cycle. Based on an examination of history-tool artifacts, the preced-
ing chapter provides a rational reconstruction of seven independent tasks which
early designers envisioned history tools supporting. It reveals that current history
tools focus on providing support for individual uses of history information while
paying little or no attention to the integration of various uses of history tools.

This chapter is concerned with the integration of the seven uses of history
information to evolve new history-tool designs. The analysis focuses on cognitive
and behavioural considerations for such integrated history tools. The first section
proposes different kinds of information that a history should maintain. The
second section proposes system capabilities needed for using this information.

Contents of a User History
The discussion, thus far, has been rather vague about the kinds of informa-

tion maintained in a user history except to say that it is a collection of information
associated with a user’s past interactions with a system. This was done deli-
berately to allow an unrestricted interpretation of a history use to dictate the
kinds of information that a user history should maintain rather than to allow a
haphazard choice of whatever is easily accessible.

The seven history uses provide insights into a variety of information that his-
tory tools should maintain. While certain history information may serve a number
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of different purposes, it is unlikely that the particular information can service all
seven history uses. Similarly, information available in one form may not be as
useful as the same information represented in a different form. Therefore, it
would be useful to maintain a variety of information related to a user’s past
interactions as well as a number of different representations of the same informa-
tion. In the following subsections, we present a number of distinctions regarding
different representations and different kinds of history information:

g Actions and objects referenced in actions
g User inputs and system responses
g States as well as transitions
g Specific information and peripheral information
g Externalized information and internalized information
g User and behavioural information

Actions and Objects Referenced in Actions
In addition to reusing previous actions, users may reuse the objects refer-

enced in their previous actions (e.g., the name of a directory). Many history tools
in UNIX maintain a log of user actions only (i.e., whole command lines) and do not
keep separate logs of action objects (e.g., file names, directories, network
addresses). Such information would facilitate search and selection. For example,
the SYMBOLICS GENERA programming environment [McMahon, 1987] supports a
type mechanism that maintains multiple lists of different objects using a user
interface type and allows users to access easily a relevant list, where relevancy is
determined by the desired type in the current context.

User Inputs and System Responses
History for inter-referential I/O also reveals that users, in addition to

referencing previous user inputs, may also reference system responses produced
from previous user actions. Maintaining a history of system responses is useful
because users can consult or make use of the system responses in their subsequent

98 OIS.DB% ls /usr
bin/ dict/ hosts/ local@ new/ sccs/ stand/
crash/ etc/ include/ man/ pub/ skel/ tmp/
Diag@ games@ lib/ msgs/ preserve@ spool/ ucb/

99 OIS.DB% !!/ skel/

Example 1: The 98th command reveals the contents of a directory, /usr,
which represents information generated as a result of a user request. One
piece of the information, skel/, is used as part of a subsequent user
command which requests the system to list the contents of the
subdirectory skel/.
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actions (see Example 1) without first having to repeat the user actions to derive
the desired system response (i.e., history tools can economize user actions).

States As Well As Transitions
A distinction arising from our taxonomy is that a history can be a collection of

visual snapshots of system states or a collection of state transitions (i.e., user
operations used to effect state transitions). The visual snapshots contain informa-
tion about particular system states. Such information is useful for helping users
to re-acquire the mental context for a desired system state. However, a state-
based user history does not maintain explicit information about the operations
that led to a state from a previous state. Thus, it is not a suitable representation
when users need access to the transition information.

Of course, there are also arguments to be made about the unsuitability of
transition-based user histories. To illustrate, users need to examine some aspect
of an earlier system state and they only have a transition-based history available
to them. They must first have a mental image of either the current state or some
earlier state. Then, using the transition-based history they must incrementally
derive the previous or subsequent system state, depending on which mental image
they start with, by updating that mental image until they reach the desired sys-
tem state [Cowan & Wein, 1990]. Hence, a transition-based user history requires
users to expend substantial mental processing effort in order to locate a system
state so that they can examine some aspect of that system state. Thus, for this
type of a task, the transition-based representation is not suitable when they need
to access state information.

Specific Information and Peripheral Information
So far, we have concentrated on information specific to a user’s interactions

(e.g., user actions, system responses). However, history for reuse and history for
error correction have also shed light on the need to maintain peripheral informa-
tion. This is information, generated in the course of user interactions, that is not
directly relevant but peripherally relevant to a user’s immediate interactions.
This information is important because it provides users with ‘‘information for
thought’’ (i.e., information that can enhance both user interactions with a system
as well as the user’s understanding of their tasks and interactions). There are
three types of peripheral information that should be maintained in a user history:
history commands, unaccepted user inputs, and snapshots.

History commands are commands used to manipulate a history. They are
considered peripheral to the immediate user interactions because they are not
commands related to a user task but commands that expedite the specification of
actions to perform a task (i.e., they allow users to reuse previous actions). No his-
tory tool maintains history commands, but they should because it may be advanta-
geous for users to manipulate a history command rather than a task command
(i.e., it may be faster and require less effort). Consider the scenario in Example 2
in which the next command to be issued can be derived by reusing either a history
command or a task command.



30 Chapter 3: Cognitive and Behavioural Issueshhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

history command task command
ls ˜/thesis/talks

ˆtalksˆproposal ⇒ ls ˜/thesis/proposal
cd !-2:$ ⇒ cd ˜/thesis/talks
cd !-2:$ ⇒ cd ˜/thesis/proposal

Example 2: A user intends to invoke the task command cd
˜/thesis/proposal. It is a variation of an earlier task command which may
be reused by typing a UNIX csh history command consisting of the word cd
followed !-2:$. This history command retrieves the last parameter
˜/thesis/proposal from the second last task command (i.e., ls
˜/thesis/proposal). However, it is the same history command used to
generate the preceding task command, cd ˜/thesis/talks. Another reuse
operation, involving fewer keystrokes, is to invoke rather than retype the
preceding history command by typing !!m. !!m is a meta-history command
which repeats the previous history command.

Unaccepted user inputs are user inputs that are rejected by a system because
they are entered incorrectly (e.g., misspelled command) or used in an inappropri-
ate context (e.g., trying to examine a file which is not in the current directory).
Current history tools consider these inputs as errors and therefore, irrelevant.
However, as suggested by the use of history for error correction, users may
expedite error recovery by correcting and/or reusing the unaccepted user input
(e.g., correcting the spelling of a command).

Snapshots are visual snapshots of a system state. This information is impor-
tant because human memory research indicates that people do not attend to or
remember all the information with which they are presented [Lindsay & Norman,
1977]. Users may have ignored the information by mistake or thought that it is
not important for subsequent interactions. Therefore, while the snapshots may
appear to capture extraneous information, they allow users to examine, in retros-
pect, aspects of those snapshots that they did not attend to earlier or remember.
Furthermore, the snapshots contain visual contextual cues which can help users
recognize information that is difficult to recall.

Externalized Information and Internalized Information
As users perform tasks using computers, they mentally retrieve information

(i.e., retrieved information) that is relevant to the performance of the task. One
useful aspect of history tools is that they cache this retrieved information so that
users need not retrieve it from their memory when it is needed again.

Our discussion of options for history information has focused on retrieved
information that has been communicated to the system (i.e., externalized informa-
tion). However, history tools should not artificially restrict the retrieved informa-
tion to only that which the users have explicitly communicated. That is, history
tools should also capture internalized information; retrieved information that
users do not communicate to the system during a session.
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Since internalized information is not explicitly made available in the course
of the interactions, users must either volunteer the information or the system
must probe the user for it. In the latter case, Ericsson and Simon (1980) claim
that there are only two kinds of information that a system can reliably probe for:
a) information in short-term memory (i.e., information in focal attention) or b)
information in long-term memory for which the system can provide direct probes.
They claim that intermediate results of automated processing1 or ongoing cogni-
tive processes (e.g., recognition processes, perceptual-motor processes, and long-
term memory direct retrievals) are unavailable, but final results are.

User and Behavioural Information
The use of history for user modelling and user interface adaptation point out

the need to maintain, in a user history, information about individual users and
their behaviours. Such information includes user preferences, aliases, task prefer-
ences, and user behaviours. They are inferred from an analysis of the user’s
interactions.

This type of history information depends on the kind of information being
sensed and the technique for interpreting and inferring knowledge and behaviour
from the sensed information. As alluded to in Chapter 2, both the sensed informa-
tion and the inference techniques are many and varied. They need to be deter-
mined in advance and incorporated into history tools. As an illustration, Chapter
4 describes a behavioural phenomenon observed in user interactions – the
repeated reference to a group of previously issued commands. Chapter 5 describes
a technique for isolating this behavioural phenomenon. Such a technique should
be incorporated in history tools in order to support this behavioural phenomenon.

Basic History Components
Different history uses require different history processing capabilities. For

instance, history for reuse, inter-referential I/O, and error recovery require tools to
reuse relevant history items, to relate them to current interactions, and to make
corrections. As well, history for navigation and reminding require the display of
the history for consultation purposes. Similarly, history tools require additional
capabilities for exploiting particular types of history use. For instance, reuse of a
previous interaction with possible modifications requires editing tools to alter the
selected history item so that it can be reused properly in the current context.
Reuse of a functional group of prior interactions requires tools for grouping items
of a history so that they can be reused as group.

In order to support all seven history uses, our analysis of the requirements of
history tools for each of the seven history uses reveal the need for minimally sup-
porting the following four components: collection, presentation, submission, and
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1
Such behaviours have become fully automated and the associated knowledge and in-

termediate processings are integrated and composed into high-level procedures which are
executed without being interpreted [Anderson, 1982].
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administration [Barnes & Bovey, 1986; Joy, 1980; Lau & Asthana, 1984]. The col-
lection component captures relevant information for a user history; the presenta-
tion component displays a user history; the submission component allows users to
select history information for use in the context of the current situation; and the
administration component manages, internally, a user history.

Collection of History
Caching relevant information helps users to conserve valuable internal

memory stores but may incur cognitive and physical overhead costs [Schonpflug,
1988]. These costs include internally encoding aspects of history information and
extraneous processing in order to access and locate information in the user his-
tory. Also, while the availability of vast storage capacities permit the retention of
a great deal of history information, there is concern for the economic and efficient
deployment of computational resources. Hence, judicious selection of history infor-
mation is important as it influences the usability and effectiveness of history tools.
Issues concerning what to collect, how much to collect, and what means are used
to collect the information are addressed, in part, by two strategies: selective logs
and user collection tools. Note that neither strategy is considered wholly effective
or efficient.

Selective Logs
Selective logs automatically collect information concerning a user’s recent

interactions that is directly accessible from information exchanged during the
interactions. Information that is indirectly accessible can also be collected using
appropriate heuristics which infer and extract this information. The heuristics
are based on empirical observations of user interactions and history use, or
knowledge about task and interaction protocols. A case in point is Greenberg and
Witten (1988b)’s study which observed considerable temporal bias in the com-
mands that are repeated; on the average, 60% of the repeated command lines
occurred within the last 10 command lines. Thus, they suggest that a simple stra-
tegy would be to keep the last 10 command lines issued as they are most likely to
be repeated.

User Collection Tools
Designers also recognize the fact that some information is difficult to identify

and access, and suggest the provision of appropriate capabilities that permit users
to designate and to cull such information. User collection tools provide annotation
capabilities which allow users to volunteer internalized information. The annota-
tions can enhance the information obtained in selective logs or fill in missing infor-
mation (see Example 3).

An alternative annotation scenario is to log all meaningful input and output
information from user interactions. This log is then supplemented with tools that
would allow users to cull the information when needed. An example is the facili-
ties available in some window systems like SUNTOOLS that save substantial
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Example 3: A program management task involves a search subtask and
program modification subtask. The search subtask involves scanning a
hierarchical file system to locate source program files to be modified in the
program modification subtask. Users may not be aware of the file search
criteria. Therefore, they are unable to communicate this information as
they sift through the file space looking for the desired files. An annotation
tool would allow users to note the locations of the files so that they can be
dealt with in the program modification subtask.

portions of old contents of windows. The contents can be reviewed with the aid of
a scroll or search mechanism.

Presentation of History
The display of history is an important functional component of history tools.

It augments user interactions by allowing users to access and use history informa-
tion and provides an externalized representation of certain contents of a user’s
memory. As a clarification of terminology, the term internal memories refers to a
user’s own memories and the term external memories refers to any external media
(e.g., notebook) which people use to record information from their internal
memories. Two examples of external memories are visual stores and computer
stores. Visual stores refer to a computer’s display and computer stores refer to
electronic files. The visual history mediates user access to external memories and
facilitates certain mental and physical processing operations. Many of the current
history tools, especially for reuse, are severely lacking in display support. Four
different mental processing operations facilitated by a visual history and their
associated support are examined:

g spontaneous reminding
g deliberate reminding
g visual scan and/or search
g problem solving and improvisations

Spontaneous Reminding
The old adage ‘‘out of sight, out of mind’’ is an apt introduction to a mental

processing operation known as reminding which was first introduced in the discus-
sion of history for reminding. A spontaneous reminding occurs when a user
notices that an earlier situation shares certain similarities to the situation at hand
[Ross, 1989]. Such phenomena may be nurtured by the presentation of a user his-
tory which provides visual reminders of past experiences. Also, by prominently
displaying a user history, history tools help to augment a user’s internal memories
and to mitigate forgetting. Finally, the display of a user history leads to a user
awareness of information that is not remembered or considered (i.e., it helps ini-
tiate reminding) as illustrated in the Example 4.
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Example 4: A user has a vague recollection that a similar problem was
previously encountered but does not remember the circumstances nor the
solutions. In browsing a visual history, visual cues trigger the recall or
recognition of relevant information and thereby help users to retrieve
relevant knowledge about the problem and its solution.

Deliberate Reminding
When there are no visual reminders – from a lack of reminding information

or visual representation schema – recall and recognition cannot be spontaneously
facilitated. Then, the onus is on a user to initiate and pursue deliberate reminding
by explicitly probing and extracting relevant history information. Such retrieval
activities are fruitful if suitable cues are provided to elucidate the history informa-
tion and to aid the retrieval of relevant history information.

There are cues that favour recognition mechanisms and those that favour
recall mechanisms. The attributes that make cues effective are the subject of
intense research and are particularly important if the potentials of history are to
be realized [Larkin & Simon, 1987; Miyata & Norman, 1986; Reisberg, 1987;
Schonpflug, 1988].

Visual Scan and/or Search
Recognition and recall operations may require that users perform a visual

scan and/or search of their history. Many graphical systems exist today and they
allow users to exploit the power of the display. A good graphical representation or
diagram allows users to use quick perceptual judgements in place of abstractions
and thereby expedite searches [Larkin, 1989]. Also, users may not have conscious
access to scan and search knowledge, especially if perceptual knowledge is
involved [Reisberg, 1987]. Finally, users may have difficulty in characterizing and
communicating such knowledge because of limitations in interaction or communi-
cation capabilities. The display helps to bridge such difficulties by allowing a user
to scan and search for the desired information.

Such visual processing operations are facilitated by a set of support capabili-
ties. For example, users may need to locate and compare different pieces of his-
tory information which may be widely dispersed. A tool that allows users to locate
and collect this information would be useful. Also, in order for users to identify
and match a number of attributes, they need representational support to view and
highlight information in different ways (e.g., fisheye views [Furnas, 1986]).

Problem Solving and Improvisations
Problem solving is often done in the context of an external display (Larkin,

1989 pg. 319). The display facilitates the process by reducing the complexity of
the mental processes required. Furthermore, it is well-known that some people
can think better with pictures because such thinking involves perceptual infer-
ences as opposed to thinking with propositions which involves logical inferences
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[Larkin, 1989]. As indicated in Chapter 1, improvisations occurring in a situation
similar to one encountered earlier can benefit from access to history information
from related situations. Also, a visual history can enhance problem solving. Thus,
the display and a user history are possibly two of the many resources that users
may use to support their problem solving or improvisations [Suchman, 1987].

Submission of History Item
One of the objectives of history tools is to reduce the physical effort required

to specify commands after some form of the command has been previously exter-
nalized. The proposed benefits are increased speed, convenience, and economy of
user actions as compared to that of retyping or repeating a user action. This type
of support also frees the user from dealing with low level aspects of specifying com-
mands or performing action sequences. The user is free to concentrate on the con-
ceptual difficulties of a problem, especially when a similar problem has been previ-
ously encountered. This enables users to address difficulties associated with com-
mand specification and difficulties arising in the course of user interactions. In
order to realize these benefits, the submission component must provide certain
capabilities that will result in minimal distraction and minimal cognitive and phy-
sical effort. We propose four capabilities for facilitating submission of information
from a user history: identification, modification, retraction, and coordination.

Identification
One important design requirement is to allow users to identify the desired

history item for submission. There are two possible identification techniques: a)
browsing a visual form of a user history to locate the history item and then point-
ing to it, or b) recalling the history item from a user history with a selection cri-
teria. It is necessary to support both techniques as circumstances and individual
preferences may call for the use of either technique. The concern is how to
integrate the two techniques.

Selection of history information from a display is a natural use of the display.
McMahon (1987) describes a mechanism which associates a type attribute to
display objects and allows a particular interaction context to dictate the display
objects that are selectable.

A history item is recalled when it is not visible, or it is difficult to locate visu-
ally, or it is more amenable to description than selection. The description may
focus on certain distinguishing attributes of the item (e.g., a file name or a pattern
occurring in the command) or on when the command occurred (e.g., last com-
mand). For example, in the UNIX tcsh filename completion mechanism, a user pro-
vides enough characters to identify a desired filename followed by an ESC charac-
ter [Joy, 1980]. The facility completes the rest of the characters of the filename
after consulting a list of filenames using the partial filename as a key.

Minimally, selection and recollection capabilities must be supported. A his-
tory type mechanism can be used to associate types to history information and to
ensure that information appropriate to the current context can be selected or
recalled. A history completion mechanism can be used to recall the particular
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history information from a list of candidates provided by the history type mechan-
ism. A facility integrating such a history type mechanism and history completion
mechanism supports the selection and/or recollection of the desired history infor-
mation from a user history. Such a facility is considered in Chapter 6 where a
number of history identification schemes are analyzed.

Modification
Information in a user history may be reused for some other purposes, may

have been entered incorrectly and require correction, or may be an appropriate
substitute for the desired information. Thus, since the selected history informa-
tion is not always in a desirable form, users need tools to modify selected history
information into an appropriate usage form.

There are three important issues. First, it is rare for users to select and edit
history information in one step, partly because of the cognitive and physical effort
involved in juggling both operations. Thus, it would be desirable to separate the
two operations so that a user can verify that the desired item is correctly selected
before changes are made to it. This separation also helps a user to refine the
selection criteria if the wrong history information is selected.

Second, the modification capability should support features from a user’s pre-
ferred editor so users need not learn new editor commands. Thus, existing editing
skills can be carried over to history tool usage.

Finally, users may need to make modifications which may affect different ele-
ments of a piece of history information (e.g., words, arrangements of words, mean-
ings, concepts, intentions). Thus, an editor must facilitate this. The question is
how does the modification component provide such functionality and encourage
users to explicitly indicate which elements in a user history are used? If users are
encouraged to make explicit the elements that are to be modified in the process of
making the modifications, then the modification facility could assist the collection
component in annotating the information in a user history.

Retraction
The ability to retract operations is desirable for error recovery purposes.

Also, retraction is a desirable function of a history tool itself because inherent limi-
tations of history collection facilities, such as difficulties in detaching graphical
actions from context, may result in the erroneous use of a user history. In associa-
tion with a coordination tool, retraction permits user improvisation and error
recovery to be initiated and coordinated. The retraction tool may be as sophisti-
cated as Archer, Conway, and Schneider (1984)’s tree-based UNDO, REDO, and SKIP.

Coordination
Information in a user history may be submitted by either a) identifying and

editing the information or b) composing user inputs using information from a user
history (e.g., ls !$). The coordination capability is concerned with how history
information is drawn into the course of user input composition. As suggested in
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the section entitled ‘‘Contents of a User History’’, there may be a number of dif-
ferent collections of a user history each maintaining different kinds of history
information (e.g., locations of files, directories). In any usage situation, the desired
information in a user history may come from one or more of these collections.

To support the formation of complex or compound commands, the coordina-
tion capability must allow users to group and generalize a number of history com-
mands. The sophistication of this capability depends largely on the extent and the
frequency with which users build complicated commands. The capability may be
as sophisticated as a programming-by-example facility or as lightweight as a
macro facility. However, it is reasonable to assume that the cognitive and physical
effort involved in using the programming-by-example facility may limit a user’s
desire to use such a facility. Furthermore, we noted in Chapter 1 that user
interactions are error-prone, improvisational, non-systematic in their recurrences,
and interleaved with other activities. This suggests that users would prefer finer
control than a macro facility would allow. Thus, users may opt for a facility that
allows them to sequence and queue up a number of commands from a user history
prior to submission.

Administration of History
The fourth history component is concerned with the internal organization and

preservation of history information. There are three areas of concern:

g Separating independent user histories
g Accessing history information
g Aging, saving, and discarding history information

Separating Independent Histories
In many of the history tools examined, there is little or no logical separation

of collections of a user history (i.e., into input and output or into task-specific
groupings). In general, a user history is associated with a user’s session. Such an
ad hoc approach to maintaining a user history leads to a number of problems.

First, a user pursues a number of different activities concurrently within a
session [Bannon, Cypher, Greenspan, & Monty, 1983; Cypher, 1986; Lee, 1992a;
Miyata & Norman, 1986]. By grouping all the interleaved activities into a single
collection, users may expend more time and effort to scan, search, and differen-
tiate history information associated with a particular activity. As a result, they
may be deterred by these inconveniences or they may be unable to capitalize on
the benefits that the information in a user history provides. For example, users
may not use their history to help them re-acquire the mental context for an
activity because a great deal of effort is required to sift through their history to
find the desired information.

It would be beneficial to maintain a user history appropriate to a particular
set of activities, a work context or a task. Then, the issue becomes one of how
users, in the course of their interactions, signify movement from one work context
to another and thus associate subsequent activities to a particular work context or
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task. As one solution to this problem, a simple windowing mechanism allows
users to logically organize different tasks into different windows where activities
conducted in a particular window belong to one task. Shifts in user attention or
switches in tasks may be explicitly and effortlessly conveyed to a system in the
course of a user’s interaction [Bannon, Cypher, Greenspan, & Monty, 1983;
Cypher, 1986; Miyata & Norman, 1986].

Second, the artificial separation of history by session is problematic. The end
of a computer session does not necessarily herald the completion of a set of tasks
but instead, for example, some other engagement may preclude continuation at
the present time [Bannon, Cypher, Greenspan, & Monty, 1983; Cypher, 1986].
Similarly, when users remotely log into a computer from another computer, the
remote session is not part of the local session. Hence, there is now a second user
history (i.e., one on the remote machine and one on the local machine) containing
information that is not easily accessible on the local machine.

Finally, some history information spans more than one work context (i.e., it is
global) and should be available to other work contexts as illustrated in Example 5.
However, it is not clear how such information is extracted and placed into a global
user history.

Example 5: A UNIX user prefers to use the ls command with the -F option
regardless of the particular user task. This command lists a directory’s
contents and marks items with an appropriate trailing symbol
corresponding to the type of the item (e.g., a ‘‘/’’ for directories). Thus, this
particular user preference should be kept in a global history rather than a
user history for that task.

Accessing History Information
Occasionally, users may need to have access to history information that is

older and/or not available on the display (i.e., it is in an electronic file). In such
cases, they need capabilities that are akin to query and search capabilities which
allow a subset of the history information to be extracted from the computer store
for user perusal.

Aging, Saving and Discarding History Information
The final set of issues pertain to the management of history information in

the display and computer stores. One display issue is how to age items in a user
history so that items that are not referenced are less visible and less accessible.
Also, the amount of screen real estate available to display a user history is limited
and priority should be given to important history items. The issue of when and
which items should be removed from the display is crucial because displacing
important items may result in the loss of an item’s service value to a user. These
issues are reminiscent of the computer memory management issues for executing
programs – a relationship which is explored further in Chapter 5.

One computer storage issue is how long to keep history information. Keeping
information, that is never consulted or is ephemeral would needlessly consume
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system resources and would obscure more important information. On the other
hand, some information persists for some time, possibly indefinitely, and prema-
ture removal would render a user history ineffective. This includes temporary
information that concerns a particular active task or permanent information, like
important or novel task solutions and user preferences or methods for adapting
system behaviour (e.g., Example 5). Information concerning an active task should
remain until the task is completed. Thus, the persistence of a history item –
ephemeral, temporary, or permanent – needs to be identified and appropriate
storage actions undertaken.

Concluding Remarks
The design of an integrated history tool must be concerned with two impor-

tant questions: what information should be kept in a user history and what func-
tionality should be provided to support user access to the information in a user
history? With these two questions in mind, our analysis of the seven uses of his-
tory tools led us to propose several answers (Table 1 summarizes our proposals).

While the seven uses of history can provide one possible source of insight to
these two questions, additional corroboration and elaboration may be available
from other sources. One source is naturalistic observations of user interactions
which provide insights into behavioural characteristics and patterns evident in
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Table 1: Questions, options, and examples examined.
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user interactions. These behavioural insights are the bases for heuristic tech-
niques used by history tools to capture relevant information from user interac-
tions. The studies in Chapter 5 are rigorous examinations of a behavioural
phenomenon observed in a naturalistic study of UNIX user interactions.

Relevant history information may also be based on a theory of user interac-
tions. For instance, Uejio, Blattner, Schultz, and Ishikawa (1991) describe two
history tools developed from two different models of command retrieval. One com-
mand retrieval model suggests that users search for commands based on some
semantic relationships, concepts, attributes, and abstractions. The corresponding
history tool logs complex commands and maintains various attributes about these
commands: frequency of use, files accessed, time executed, and keyword descrip-
tions. The other command retrieval model suggests that, sometimes, users have a
fuzzy recollection of the information. A neural network is used to maintain previ-
ous user commands and to allow users to recall particular history information
using an incomplete specification of the desired information.

While behavioural studies and theories of user interactions can provide
insights concerning useful history information and capabilities, they do not substi-
tute for insights from a detailed study of user behaviour. Studying how users use
prototype history tools or asking users about what history information and history
functions they would like can be equally informative.
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Chapter 4

User Interaction Behaviour
and History Usage

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

The preceding analysis of the seven potential uses of history shed light on a
number of cognitive and behavioural considerations underlying the use of history
tools. This analysis permits a broad examination of the scope and coverage of
these relevant variables and hence, user requirements. However, the insights are
based on an informal task-artifact analysis of current history tools rather than a
behavioural analysis of user interactions and history tool use. Behavioural
analysis of computer-tool usage provides another source of information about user
requirements; one that is directly supported by behavioural data. However, it is
conducted within a specific and focussed context and is limited in the issues that
can be examined and the generalizations that can be made.

This chapter describes an exploratory behavioural study of three UNIX com-
mand interpreters and their history tools. It is exploratory because everyday
natural user interactions within UNIX are observed, unconstrained by experimen-
tal controls. The motivation for performing this particular study is presented, fol-
lowed by a description of the study and its findings.

Behavioural Studies of User Interactions and History Use
Several studies have investigated how individuals and groups of individuals

interact with computer systems. Most of them concentrate on command usage and
makeup of command sets to derive general implications for user interface design
(e.g., Akin, Baykan, & Rao, 1987; Boies, 1974; Draper, 1984; Greenberg & Witten,
1988a; Hanson, Kraut, & Farber, 1984; Krishnamurthy, 1987). They identify
important behavioural trends regarding frequency of command use or growth in
command sets. However, very few studies have focused on uncharacteristic user
interaction behaviours arising from constraints in computer tools and environ-
ments (i.e., behavioural phenomena). An example of such a study is Greenberg
and Witten (1988b)’s study which found that users frequently issued previous com-
mand lines (i.e., on average, 74% of the commands lines are recurrences). We are
interested in such behavioural phenomena because they can provide insights into
the kinds of user support tools, particularly history tools, that we need to provide
in order to nurture and enhance user interactions.
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Furthermore, in order to shed light on how history tools can provide user sup-
port for user interactions, we need to examine the kinds of functions in history
tools that people use. We are aware of only one study that has examined actual
usage of history tools (i.e., Greenberg and Witten (1988b)’s study). That study
documented the extent of history usage (54% of the subjects used history but in
only 4% of their commands) and the referenced history items (the bulk of the refer-
ences were to the last 2 commands), but their study did not examine the history
functions that were used. Such observations could reveal the strengths and
weaknesses of history tools and the user needs and requirements with respect to
the content of a user history and the history functions.

Exploratory Study of User Interactions and History Usage
Since previous studies have not examined certain behavioural aspects related

to user interactions and history-tool usage, we conducted our own study. The
study has two objectives. The first objective was to identify behavioural
phenomena in everyday natural user interactions that are particularly relevant to
history-based, user support tools. The second objective was to examine the history
functions that users employ and to compare usage of two history tools.

The exploratory study observed everyday natural user interactions of users of
three different UNIX command interpreters – Bourne Shell (sh) [Bourne, 1979], C
Shell (csh) [Joy, 1980], and TC Shell (tcsh) [Ellis, Greer, Placeway, &
Zachariassen, 1987] – with no experimental controls and no observer present.
Three UNIX shells are examined because they provide a richer pool from which
subjects can be drawn and from which similarities and differences in user interac-
tion behaviours and history use can be observed. While this methodology may
reveal natural behavioural patterns evident in user interactions, it does not pro-
vide information about the factors influencing the behaviour. Therefore, its
findings should be interpreted with caution. Furthermore, UNIX is a textual,
command-based system and the contents of a user’s history in csh and tcsh are the
command lines. Therefore, issues pertaining to graphical, gesture-based systems
are not explored.

A possible criticism may be made about studying a system with poor usability
such as UNIX when direct manipulation systems like the MACINTOSH are popular
and widely used. The following reasons are offered in answer to such a criticism:
(1) There is a large user community with varying skills and task complexities.
(2) This study adds to the accumulating body of knowledge about user interac-

tions in UNIX [Akin, Baykan, & Rao, 1987; Bannon, Cypher, Greenspan, &
Monty, 1983; Desmarais & Pavel, 1987; Draper, 1984; Greenberg & Witten,
1988a; Greenberg & Witten, 1988b; Hanson, Kraut, & Farber, 1984].

(3) The shells permit user access to a wide range of UNIX applications. Hence, we
can potentially observe general patterns of behaviour.

(4) Most UNIX shells support history tools (e.g., Korn Shell, C Shell, TC Shell).
While UNIX has some usability problems which may result in some artificial
behaviours, these problems should not preclude the observation of behaviours that
are fundamental to user interactions with textual command-based systems.
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Method

UNIX Shells and History Tools
A UNIX shell is a programmable UNIX command interpreter. We selected sh,

which does not support a history tool, because user behaviours in this shell can be
compared against those behaviours observed in UNIX shells which support history
tools (i.e., csh and tcsh). In csh and tcsh, command lines that are issued are col-
lected into a history list which is displayed upon the user’s explicit request. The
history list is a user history and each of its entries contains a user command line
known as an event.

A csh user command line may be a shell request (e.g., ls file), a history
request (e.g., !!) or a hybrid request (e.g., !! | lpr -Pntx). A hybrid request combines
shell and history requests. A csh history request has the following syntax:

event designators [ : word designators ] [ : modifiers ]
Optional items are delimited by the symbols []. Event designators select particular
events in a history list (e.g., !! for the most recent history event). Word designators
select words from the associated history event (e.g., :2-4 for the 2nd, 3rd, and 4th
word). Modifiers request that changes be made to the associated history event
(e.g., :1 extracts the second word of the associated event).

This syntax allows event designators to be bound to zero or more word desig-
nators and/or modifiers (e.g., !-5:s/aaa/bbb recalls the fifth last event and makes
the substitution before submitting the modified history event). Thus, users can
modify a history event before issuing it. csh provides a number of short cuts for
word designators (e.g., !$ is the last word of a history event) and modifiers (e.g.,
ˆpatternˆreplacementˆ replaces portions of the last event matching pattern with
replacement).

The command history prints a portion of a history. As well, when the :p
modifier is used with a history event designator, the retrieved history event is
printed rather than issued (e.g., !!:p prints the last history event). Table 1 lists
the number of event designators, word designators, modifiers, and history print
requests in csh. Note that the number of modifiers excludes the :p modifier which
is accounted for in the number of history print requests.

tcsh is a superset of csh and supports two enhancements to the csh history
tool: a) a history retrieval operation may be performed separately from a history
modification operation and b) command line editing and history manipulations are
facilitated by emacs-style control keys.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Event Word List Contents Total Number

Designators Designators Modifiers of History of Operatorsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
7 11(4) 9(2) 2 35iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c

c
c
c
c

c
c
c
c

c
c
c
c

Table 1: The number of csh history functions in each category. The
number in a parenthesis represents the number of short cuts.
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Two history retrieval options are available in tcsh:
a) step backwards and forwards through a history list examining each event one

at a time, using a cursor-like control key.
b) provide a pattern followed by a search backwards/forwards control key. The

system searches backwards or forwards through the history list for the first
occurrence of a history event beginning with the characters in the pattern.

Both history retrieval options and edit operations are invoked from the user’s
current input location in the shell session with the retrieved history event
overwriting the history retrieval request. Effectively, a one-line edit buffer exists
at the user’s current input location.

Data Collection
The Berkeley 4.2BSD script program records everything printed in a user ses-

sion. When it is invoked, its process is inserted between the shell process and the
terminal process. The terminal process controls user inputs from the terminal’s
keyboard and system outputs for the terminal.

The script program was modified to produce a server and client version of the
program. There are two reasons for doing this rather than modifying the three
shells. First, less effort is required to instrument one program than to instrument
three UNIX command interpreters to log the usage data. Second, using this
approach, it is possible to identify when users invoked history functions, what
sorts of history functions they made use of, and what sorts of command line edit-
ing were performed. Logging the data after the user’s input is parsed by the shell
precludes access to the history usage data.

In the server-client version, the server-script process rendezvous with one or
more client-script processes dispersed, possibly, on different machines to record
the data collected by the client script program into a central file. Each client-script
process is associated with a user session and records the raw keystrokes (e.g., vi
ˆH !$) initiated in that user session.

In general, a shell process parses the raw keystrokes to produce the fully-
parsed command line. If we only capture raw keystrokes, we have no access to the
fully-parsed command line. We can interpret some of these raw keystrokes (e.g.,
the raw keystrokes cdˆHˆHls News can be easily interpreted as ls News because ˆH
is the control character for backspace). However, we are unable to interpret all
raw keystrokes. For example, we cannot interpret the ˆ[ character in the raw
keystroke cd News/ˆ[ without recording information about the contents of the
directory from which this command was issued because the control character ˆ[
completes the file name with the name of a file in the current directory matching
the starting pattern.

Since we cannot interpret all raw keystrokes without recording extraneous
information, we use a heuristic to capture fully-parsed command lines that the
shell echoes as it parses raw keystrokes. This heuristic scans the first n charac-
ters of output lines from the shell process for the user’s prompt character c. The
two parameters, c and n, are set up individually in consultation with each subject
at the beginning. We had mixed success using this heuristic to record every fully-
parsed command line. Consequently, we did not manage to record all fully-parsed
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command lines matching all recorded keystrokes. While this flaw is a drawback,
it is not a serious one because we are able to observe, qualitatively, some
behavioural phenomena based on the fully-parsed command lines that we did
record. However, we are unable to quantify the extent of any observed
behavioural phenomena (e.g., mean number of recurrence of the same fully-parsed
command line).

Subjects
6 sh, 10 csh, and 7 tcsh users volunteered for the study. They were graduate

students, staff, and faculty members from computing sites on campus who were
skilled users of the particular shell. They used UNIX to carry out their day-to-day
tasks (e.g., system administration, programming, statistical analysis, document
preparation and communication).

Knowledge and use of the history tool were not prerequisites for participation
in the experiment as the study’s objectives were to get a representative sample of
users. If such prerequisites had been used, the study would have ignored the
behavioural characteristics of non-history-tool users and we would not have gotten
a sense of the number of non-history-tool users.

In the analysis, only the data for those subjects who issued 500 command
lines or more during the monitoring period were examined. This restriction elim-
inated those subjects who decided to withdraw from the study and allowed us to
observe behavioural patterns in UNIX user interactions. In the latter case, any
behavioural patterns existing in user interactions would be more evident in ses-
sions where many user command lines were issued. As a result, only the traces
for 3 of the 6 sh (S1-S3), 5 of the 10 csh (S4-S8), and 5 of the 7 tcsh subjects (S9-
S13) were analyzed.

Procedure
Each subject ran the client-script program in each of their shell sessions. The

program timestamps and transmits all the user’s raw keystrokes to the server-
script process. Subjects were monitored in their natural work setting over a one
week period with no experimenter present. The following data were collected: 1)
the user’s raw command line keystrokes, 2) the parsed shell command line, and 3)
the time that it took the user to issue the command line.

Results
The findings are divided into three parts. Part one discusses a basic property

evident in all the subjects’ command lines and parts two and three discuss the his-
tory functions that csh and tcsh subjects used.
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Three Behavioural Patterns
There are three patterns evident in our subjects’ traces (see Table 2):

g Users repeat individual command lines or their parameters.
g Users cycle through one or more command lines.
g Users group command lines issuing them in no specific order.

As indicated earlier, because we are unable to capture all fully-parsed UNIX com-
mand lines, we are unable to characterize the frequency of each behavioural pat-
tern (i.e., fraction of the session where each pattern was observed). However, this
problem simply means that we cannot provide this statistic.

Parameters of command lines are not the same when they are re-issued.
Observations and user comments suggest that these patterns are the result of task
and user factors. Certain tasks are inherently repetitive while others are complex
and ill-defined and require a trial and error approach. Users make errors and
must make corrections and adjustments to their actions (e.g., misspelling or mis-
typing the command line) or they are unfamiliar with the system or the task.

History-Tool Functions Used by csh Subjects
Table 3 summarizes the extent to which csh and tcsh subjects, respectively,

used the various functions available in their history tools. Each figure in the table

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Description of Pattern Exampleiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

repeating command lines and spell paper.tex | page
parameters literally spell paper.tex | page

repeating command lines with rlogin utworm
a different parameter rlogin utbugs

repeating with the same parameter page draw
but a different command name vi drawiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

setenv TERM xterm
gnuemacs −e mh-r

cycling through multiple command setenv TERM vt100
lines with different parameters gnuemacs −e mh-r

setenv TERM sun
gnuemacs −e mh-riiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
S < draw > draw.out
page draw.out

grouping command lines and page draw.out
executing them together vi draw

S < draw > draw.out
vi drawiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 2: Examples of repeating, cycling, and grouping.
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represents the percentage of the command lines the subject issued during the
monitoring period that were issued using a particular history function1. All csh
and tcsh subjects, including those who do not provide a long enough trace, made
some use of the history tools.

Subjects did not, in practice, use the full range of functions available in their
history tools (see Table 3) because they had limited knowledge of the repertoire of
history functions. Furthermore, only a small fraction of the subject’s session
involved history-tool use. Subject S9 used a history tool the most (14%) while sub-
ject S8 used it the least (3%). Since we did not have access to all fully-parsed com-
mand lines, we are unable to compare the number of command lines that were
literal repetition of earlier command lines against the actual number of command
lines formed using history tools. However, this simply means that we cannot
report this statistic.

csh subjects tend to use simple history functions involving literal recall of a
history event (i.e., !! for last event and !pattern for most recent event beginning

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Usage (% command lines)

History-Tool iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Function Used csh Subjects tcsh Subjects
S4 S5 S6 S7 S8 S9 S10 S11 S12 S13iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

csh event designators
!! 1.62 2.28 0.26 0.39 0.70 0.29 0.59 - 0.19 -
!pattern 3.28 5.52 6.78 2.42 0.53 0.75 2.58 3.06 6.74 0.63
!number 1.18 - - - - - - - 0.19 -
!-number 1.36 0.24 - - - - - - 0.19 -
!?pattern 0.39 - - 0.06 - - - - - -iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

csh word designators
!$ 3.81 2.16 1.92 0.29 1.23 1.38 - 0.74 - 0.32iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

csh modifiers
!! + add on 1.09 1.32 1.79 0.35 - 0.12 - 0.37 0.19 0.63
:gs/aa/bb, :s/aa/bb 0.07 - - 0.04 - - - - 0.10 0.16
ˆpatternˆreplacementˆ 0.96 0.36 0.13 0.33 - 0.12 - - 0.58 -iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

csh requests
list history - 1.75 - .16 .18 1.21 - - 0.96 -iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

tcsh enhancements
step back/forth 8.19 9.61 5.76 0.19 2.22
search back/forth 2.14 0.20 0.25 - 0.63iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Total 13.76 13.63 10.88 4.04 2.64 14.20 12.98 10.18 9.33 4.59iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
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c
c
c
c
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Table 3: History-tool functions used by csh and tcsh subjects.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
1

Our figures are larger than Greenberg and Witten (1988b)’s figures because they may
reflect situations in which a command line is composed using a number of history func-
tions. Thus, the reader should be cautious about making direct comparisons between the
figures from the two studies.
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with the given pattern). Some subjects did make minor use of other event designa-
tors: !n – an absolute reference to the nth history event, !-n – a backward relative
reference to the nth history event, and !?pattern – a reference to the most recent
history event containing a given pattern.

In a number of cases, the subjects included words from a history event in
composing their command lines (e.g., string * | !bm takes the output of string * as
input to a previous command line beginning with the command bm). The princi-
pal reference was the short-cut word designator for the last word of an event (i.e.,
!$). A few of the subjects made rare use of the other word designator functions:
both the regular form (i.e., :1) and the short-cut form (i.e., !*).

A few subjects opted to make modifications to a history event before issuing it
(see the csh usage figures for the csh modifier in Table 3). In many of these cases,
subjects either added text to the end of the recalled event (e.g., !! -l invokes the
last event with a -l option) or changed the previous event using the short-cut sub-
stitution operation (i.e., ˆpatternˆreplacementˆ). Some subjects did make use of
substitution requests available in the :modifier function; they included the
:s/aa/bb request which replaces an occurrence of aa with bb in the associated
event and the :gs/aa/bb request which replaces all occurrences of aa with bb in
each word of an event.

Finally, only 2 of the 5 csh subjects used the history print function.

History-Tool Functions Used by tcsh Subjects
tcsh subjects made slightly greater use of history tools compared to csh sub-

jects. In general, they preferred to use tcsh’s visual history step back/forth rather
than csh’s event designators to recall a history event. However, most tcsh subjects
opted to make use of csh’s method of recalling an event when they were searching
with a pattern (i.e., !pattern) rather than the equivalent tcsh request, search
back/forth.

tcsh subjects made less use of csh event designators and word designators; in
general, they used the same simple functions that were used by csh subjects. tcsh
subjects preferred to use control keys to edit command lines. The two rows of
figures in the tcsh enhancements section of Table 3 bundle the cases when tcsh
subjects simply recalled a command line and when they recalled a command line
and modified it with control keys. However, tcsh subjects did make modifications
when they recalled a history event which is unlike the csh subjects who tended to
recall the history events literally. While modifications were performed, they were
very simple ones. Typically, tcsh subjects altered a few characters at the end of
the recalled command line or altered a word in the command line. tcsh subjects
did not make changes to more than one word of the recalled command line.

Discussion
Our study is only one of two studies to examine the nature of history tool

usage; the other was by Greenberg and Witten (1988b). While their study provides
a number of useful findings and design guidelines, we need further elaboration,
corroboration, and investigation of history tool usage. Also, our study examines
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the types of history functions that are used, in practice, while their study
quantified the extent to which history tools are used without analysis of the func-
tions used.

The findings should be interpreted with caution because the study is not con-
trolled, the subject pool is not large, and only command-based interfaces are stu-
died. However, there are several implications for user requirements.

First, the observed patterns – systematic repetition of whole or parts of one or
more command lines – and the nature of history tool usage provide evidence of
reuse of whole command lines as well as partial reuse of commands and argu-
ments. Thus, the ability to refer to components of a history event is desirable.

Second, subjects made changes to some recalled command lines before issuing
them. The changes were made with substitution requests available in csh and
emacs-like edit commands in tcsh. Thus, the ability to make changes to recalled
command lines is desirable.

Third, subjects used a small fraction of the 35 different history functions
available in csh. This observation is explained, in part, by the subjects’ limited
knowledge of the history functions. Thus, user training is desirable.

Fourth, subjects did not always use history tools to re-issue previous com-
mand lines. Greenberg and Witten (1988b) suggest that this is because the syntax
for recalling a csh history event is obscure and arcane. This is substantiated by
the fact that, although the csh history functions are available to tcsh subjects, 4 of
the 5 tcsh subjects prefer to use the tcsh enhancements (see Table 3). These
enhancements permit users to manipulate history events directly and this func-
tion may be more desirable than all the csh functions for recalling and modifying
history events. csh provides an abstract and symbolic means of selecting and edit-
ing history events (e.g., use of regular expressions and pattern matching) com-
pared to the direct interaction with history events that tcsh provides.

Fifth, the lack of a permanent display of a user history may be another plau-
sible reason for the minimal use of history tools. Visual presentation of history
events is important both for refreshing a user’s memory and for allowing a user to
consult the history. Neither history tool provides a permanent display of portions
of a user history except upon explicit user request. The history usage data shows
that both groups of subjects make very few explicit requests to display events in a
history list (see Table 3). As such, csh subjects must rely heavily on their memory
of recent history events. The task of recalling a history event in the absence of any
external support from the display is memory-intensive and users may opt to selec-
tively remember and recall memorable history events (e.g., recent command lines).
In contrast, tcsh users are able, at least, to peruse history events as they single
step through the history list.

Concluding Remarks
There are two observations from the exploratory study. First, there are three

user interaction patterns: repeat individual command lines or their parameters,
cycle through one or more command lines, and repeat several command lines in no
specific order. These patterns reveal a property evident in all the subjects’ traces;
subjects repeat command lines, in whole and in part, as a single directive and as a
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group of directives. While Greenberg and Witten (1988b) observed that individual
command lines are repeated, our study observed periods in a user’s session in
which the repetition is made with respect to a collection of command lines (see
Table 2). The extent to which this property occurs in a subject’s session is not
quantified because it was not always possible to deduce the complete command
line that users issued. In the next chapter, this behavioural phenomenon is
detected mechanically and the extent to which it occurs is characterized for a dif-
ferent but larger set of trace data, using the concepts of locality and working set
from computer memory research.

Second, some of the commands lines that the subjects re-issued were submit-
ted with the aid of a small subset of the history functions. Of the csh history func-
tions used, the bulk of them were simple ones such as the literal recall of a history
event or the use of short-form history functions. By and large, tcsh subjects
recalled history events by stepping or searching back and forth through their his-
tory and rarely made use of the csh event designator functions. However, unlike
csh subjects, tcsh subjects edited command lines retrieved from their history list,
changing a few characters or a word in the history event.

These two observations suggest three user requirements. First, users need
better system support to facilitate the repetition of previous command lines (i.e., a
history tool for reuse). Second, users need to be able to refer to components of a
history event, to make changes to the recalled history event, and to display their
history list. Third, users need to be aware of the availability of history tools and
their functions.

In light of the limited set of capabilities available in current history tools (see
discussion in Chapters 2 & 3), it is not surprising to discover that subjects do not
make more extensive use of history tools when the opportunity arises. Besides
poor design and poor user knowledge of history functions, there are two other fac-
tors that can influence people’s use of history tools: availability of suitable reuse
candidates and user effort required to use history tools.

The first factor is the ability to characterize relevant history events and to
predict opportunities for using history tools. One such type of opportunity is sug-
gested by the three command-line reference behaviours observed our exploratory
study. The next chapter is a systematic examination of the three behavioural pat-
terns and the implications of these reference behaviours on the prediction of
history-for-reuse opportunities and history-for-reuse candidates.

The second factor is the mental and physical effort associated with the use of
history tools. History tools may impose undue mental effort as compared to the
physical effort required to retype a command line. As indicated earlier in Chapter
1, users want to minimize such mental effort. The tradeoff between mental and
physical effort associated with using or not using history tools is examined in
Chapter 6.
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Chapter 5

Locality in User Interactions

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

In the context of human-computer interaction, recurrence is the phenomenon
in which prior user interactions (i.e., actions and objects of actions) are referenced
repeatedly in the course of a user session. One perspective of recurrence is known
as recency. Recency is the phenomenon in which recent, individual, user interac-
tions are referenced repeatedly during a user session; Greenberg and Witten
(1988b) observed that recurring UNIX command lines were 1 to 3 command lines
apart.

Another perspective on recurrence in user interactions was identified in our
earlier exploratory study. During certain intervals of a user session, a user refer-
ences repeatedly a small and related set of user interactions (see Table 2 in
Chapter 4). This clustering of user interactions is nominally referred to as locality
because it is akin to a behaviour by the same name observed in program memory
references. Unlike recency, which characterizes recurrences in terms of the dis-
tance (i.e., references to individual user interactions that are close to each other in
the history), locality characterizes recurrences in terms of periods in time where
references are made solely to a small group of user interactions1.

This chapter describes the application of computer-memory-research tech-
niques and findings to examine locality in user interactions. First, does locality
exist in user interactions and to what extent? Second, is locality a randomly
occurring behaviour or is it an artifact of user interactions? Finally, does locality
explain Greenberg (1988b)’s observations of history usage and the performance of
history prediction.

Program Memory Reference Research
As a program executes, it makes references to portions of a computer’s

memory in units known as segments; a sequence of memory references is a memory
reference string. It is neither feasible to allocate all of a computer’s memory to a
program nor efficient to allocate too much to a program since it penalizes other
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1
There can be recency without locality. However, if there is locality, then there is also

recency.
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simultaneously executing programs. Denning (1980) proposed a nonlookahead
strategy which assigns memory to those portions of a program’s memory space
that will be needed immediately, based on sampling past references. This memory
policy evolved from two concepts: working sets and locality.

Working Sets
A working set, specifiable as a program executes, is the set of segments that

were referenced by an executing program within the last T references [Denning,
1980]. It is the basis of the nonlookahead memory policy proposed by Denning
(1980) in which a program’s working set is always kept in resident memory. Fig-
ure 1 illustrates a working set consisting of 7 segments { A, B, C, D, E, F, G } for a
working-set window size of T = 10. The working-set definition suggests a process
for dynamically estimating segments currently needed by a program; the process
involves sampling past references using a moving window of size T.

The working-set concept has led to a class of tools and procedures for measur-
ing and calculating intrinsic memory demands of programs. These tools and pro-
cedures have helped researchers to understand and to model program behaviour
[Denning, 1980]. One such tool is the inter-reference distribution which is used to
calculate the rate of segment faults. Given a reference string and a segment s, the
inter-reference interval d is the distance between two successive references to s.
An inter-reference distribution is the probability that two successive references to a
segment are d units apart (see Figure 2). A segment fault occurs when successive
references to a segment are made outside a sampling window of size T (i.e., d > T).
The nature of this distribution may suggest interesting behavioural characteris-
tics. Specifically, when the distribution is skewed towards low inter-reference
intervals, it illustrates a strong recency effect and hints at a possible locality effect.
For the memory reference string used in Figure 1, Figure 2 contains its inter-
reference distribution which is skewed to smaller distances d.

Locality
Locality is the phenomenon in which a program’s memory references, made in

the course of the program’s execution, are limited to a small subset of its virtual
address space for an extended time interval. This behavioural phenomenon was
observed in studies of program behaviour and is akin to behaviour observed in
user interactions. That is, user interactions exhibit a temporal and spatial bias;
there are periods in a user’s interactions where a user repeatedly references a
small subset of the user actions appearing in the user’s session.

ABCDCCDBADEB FGH I I H I I I

T = 10
{ A, B, C, D, E, F, G }

Figure 1: Working set of size 7 with a window size, T, of 10.
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Figure 2: An inter-reference distribution for the memory reference string
used in Figure 1. The distribution plots the probability that two
successive references to a segment are d units apart. In this example, the
distribution is skewed to small inter-reference intervals d illustrating a
recency effect.

The locality phenomenon was formalized into a program memory reference
model known as phases and transitions [Denning, 1980]. Phases are intervals in a
program’s memory references where locality is exhibited. A locality set is the set of
segments referenced within a phase. Transitions are intervals in a program’s
memory references where a locality set is changing from one set to another.

While the phases and transitions model formally characterizes locality, it
does not precisely define what constitutes an interval of distinctive referencing
behaviour (i.e., a phase). Denning (1980) enumerates a number of precise
definitions of locality each of which are based on a different criteria for identifying
a phase. Madison and Batson (1976) provide one such definition and an algorithm
for classifying a phase.

This locality-detection algorithm, sketched in Appendix B, makes use of a
least recently used (LRU) stack. As segments are referenced, they are pushed
onto the top of the LRU stack. A set of segments of size l is formed when the l seg-
ments occupy the top l elements of the LRU stack. A set of segments is a locality
set if and only if all its members are each referenced at least once after the set is
formed and no segments are referenced which are not in the set. Its phase is the
maximal interval within a program’s memory references in which all references
made after the formation of the locality set are only to segments in the locality set.
The phase begins with the reference to the newest member of the locality set and
ends with the reference prior to a reference to a non-member of the locality set
(i.e., minimal interval length p is p = l where l is the locality set size). The inter-
val preceding a phase, known as phase formation (see Figure 3), is the interval
where the first reference to the oldest and newest member of the locality set is
made (i.e., interval in which the locality set is being formed).



54 Chapter 5: Locality in User Interactionshhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

0

1

2

3

4

5

0

1

2

3

4

5

A B C D C C D B A D E B F G H I I H I I I

{C} {I} {I}

{C, D} {H, I}

{B, C, D}

{A, B, C, D}

phase formation
phase

Figure 3: Locality sets of various sizes for the reference string used in Figure 1.

Unlike working sets, phases and locality sets are not determined simply; a
locality set is not detected until each member of the set is re-referenced after the
set is formed (i.e., at some point within a phase). Figure 3 illustrates an example
of the compositions and sizes of all the locality sets appearing in the reference
string used in Figure 1.

There are two reasons why a working set is not a locality set. First, a working
set captures the set of segments within the last T memory references. It may
include segments appearing in phases as well as transitions. Compare the work-
ing set for window size T = 10 with the locality sets appearing within the same
working-set window in Figure 4. Second, the process for determining working sets
does not differentiate phases from transitions and does not identify boundaries for
phases and transitions (compare the phase diagram with the working set in Fig-
ure 4) [Henderson & Card, 1986a].

Ideally, in the absence of any characterization of the extent of locality in pro-
gram memory references and the phase lengths, a memory management policy
should select the locality set as the resident memory set. During transitions,
where references are typically erratic, no nonlookahead memory management pol-
icy, including working set, can properly anticipate the relevant set of segments.

Relevance to the Study of Recurrences
Studies of locality of program references lead to two insights about optimal

memory management which are applicable to the study of recurrence in user
interactions. These two insights led computer memory researchers to conclude
that the working-set policy, with an appropriately chosen window size T, was
superior to all other memory policies.

First, researchers found that local memory management policies were more
effective than global memory management policies2 [Denning, 1980]. The reason
is that a local memory management policy, like a working-set policy, is more
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

2
Local memory policies take into account the behaviours of individual programs while

global memory policies focus on the aggregate behaviour of all active programs.
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T = 10
{ A, B, C, D, E, F, G }

Figure 4: This figure combines Figures 1 and 3. The dashed region
delimits portions of the phase diagram and the memory reference string
covered by the sampling window of size T = 10. For the given sampling
window, the working set is { A, B, C, D, E, F, G } and the largest locality
set appearing in the sampling window is { A, B, C, D }. While the working
set captures four segments belonging to four of the locality sets contained
in the sampling window, it also includes three segments { E, F, G } which
are not part of any locality set. Furthermore, the last four memory
references EBFG are to segments appearing in a transition.

sensitive to changes in memory references of individual programs and can offer a
much finer level of adjustment. In light of this result, it would be useful to exam-
ine command recurrences and methods for predicting recurrent commands which
pay attention to a user’s interactions.

Second, empirical data on program locality revealed that programs exhibited
good locality. This means that a large percentage of virtual time (over 90%) was
covered by long phases (consisting of 105 references or more to segments). [Den-
ning, 1980]. Since the time spent in a phase was long and the mean time between
two references to the same segment was short, a program’s working set provides a
good approximation of a program’s locality set; it is effectively a program’s locality
set. That is, when programs exhibit good locality and phases are long, a working
set captures primarily segments belonging to a phase and rarely segments belong-
ing to a transition. It is because of these two phenomena – good locality and long
phases – and because working sets are easy to determine compared to locality sets,
that a program’s working set provides a good approximate measure of a program’s
memory demands as well as a good memory policy for selecting segments to keep
resident in memory. In light of this observation, it would be useful to find out the
extent to which user interactions exhibit locality and the appropriateness of the
working set as a policy for predicting recurrence candidates in user interactions.
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Previous HCI Attempts to Apply these Concepts
Analogous to the computer memory management situation, there are HCI

situations where it is necessary to identify a small subset of relevant items. As
such, there have been two previous HCI efforts to employ these concepts.

Inter-reference distribution, working set, and locality were used to demon-
strate that user references to multiple graphical windows exhibit locality and
recency [Card, Pavel, & Farrell, 1984; Henderson & Card, 1986a]. While these
results are encouraging, they are by no means definitive. One reason is that the
study was not an in-depth formal analysis of window reference behaviours.
Another reason is that locality in window references does not necessarily suggest
locality in other user interaction behaviours (e.g., command line references).
Finally, unlike command line references, window references involve a coarser
grain of behaviour and a conceptually higher level of user interactions. Further
study of locality for a wide range of user interactions is needed.

Inter-reference distribution was used by Greenberg and Witten (1988b) to
analyze user interaction behaviours. They measured the frequency of command
line recurrences as a function of the inter-reference distance d and found that the
resulting inter-reference distribution was skewed to smaller distances. This
finding, coupled with the fact that the average recurrence rate was 75%, provided
evidence of recency. On the basis of this evidence, Greenberg and Witten (1988b)
adopted the working-set strategy as the basis for predicting reuse candidates and
examined its performance when different arrangements of the reuse candidates in
a user history are employed.

Importance of Considering Locality
While both studies shed light on the applicability of the two concepts (i.e.,

working sets and locality) to HCI, there are two unanswered questions pertaining
to locality in user interactions.

First, does locality exist in command line references and if so, is it a randomly
occurring behaviour or is it an artifact arising from user interactions? There is
evidence to suggest that locality is exhibited in graphical window and command
line references (see Card, Pavel, and Farrell (1984) and Henderson and Card
(1986a), and our exploratory study) but there has been no formal study of locality
in user interactions. Recurrences in user interactions arise because of 1) the
inherently repetitive nature of certain user tasks, 2) the nature of and difficulties
encounted in user interactions (e.g., engaging in multiple activities, improvisa-
tions, and error corrections), 3) the inflexibilities in user interfaces which con-
strain the user’s choice of actions, and 4) the bias toward the path of least cogni-
tive resistance. We claim that:

Claim 1: Recurrences, and in particular locality, in command line
references is not a randomly occurring phenomenon but a behavioural
artifact arising from user interactions.

Second, is locality a more useful characterization of recurrence than recency?
We raise this question because of two puzzling results from Greenberg and Witten
(1988b)’s study of the recency phenomenon in command line recurrences. The two
puzzling results are: 1) the high recurrence rate (i.e., 75%) but low history usage
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rate (i.e., 4%) and 2) the suboptimal performance of the working set strategy for
predicting recurrent commands. These two findings were based on a study of the
recency phenomenon in command line recurrences. In the following sections, we
explain how both results can be clarified if locality is considered.

While difficulties in using history tools offer one possible explanation for poor
history usage, another explanation is that the recurrence rate and the history
usage rate are not estimates of the same behavioural phenomenon and it is
incorrect to correlate them. The recurrence rate R is the proportion of activities in
a session which occur two or more times [Greenberg, 1988b]:

R =
number of activities

number of activities − number of unique activitieshhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh x 100%.

where number of activities is the total number of activities in a session (for the
reference string shown in Figure 1, R = (21-9)x100%}/21 = 57%). An activity is
either a command line or a command name associated with each user interactions.
The UNIX csh history tool is primarily a reuse tool and the history usage rate
represents those reuse opportunities which are detectable as a result of the use of
the history tool. When we associate recurrence rate to history usage rate, we are
incorrectly associating a number of different user intentions (e.g., error recovery
and others presented in Chapter 2). This could lead to an erroneous association of
the recurrence of a command line as one reason for recurrence (i.e., reuse). Note,
this is not to suggest that the recurrence rate is uninteresting in and of itself.
However, we need a refined measure of Greenberg (1988b)’s recurrence rate R
which is a better explanation of the reuse phenomenon and is consistent with the
observed history-for-reuse usage rate. Rlocality is such a recurrence rate and
represents the extent of locality in user sessions:

Rlocality =
number of activities

number of locality activitieshhhhhhhhhhhhhhhhhhhhhhhhhhh x 100%

where number of locality activities is the number of activities in a session appear-
ing in phases (for the reference string shown in Figure 1, Rlocality = 13x100%/21 =
62%). Thus, we claim that:

Claim 2: User activities, that are reused, are attributed to locality. Rlocality
is a better estimate of reuse opportunities than the recurrence rate. In
particular, many of the observed UNIX history-tool uses occur in phases
and are attributed to history-for-reuse situations.

An important concern in the design of history tools is the development of stra-
tegies to predict effectively a small set of user interactions which will be needed in
the near future (i.e., history candidates). The working-set policy offers one such
history prediction strategy. Greenberg and Witten (1988b) used this strategy to
predict reuse candidates and found that a history based on a working set (with
T =10 submissions) would, on average, contain the desired command about 60% of
the time and miss out about 40% of the time. The question is whether the
observed performance of the working-set history prediction strategy is near
optimal? Our conjecture is that the performance is suboptimal and this can
confirmed by examining the extent of locality in user command references. Recall
that computer memory research demonstrated that good locality is an important
prerequisite for the optimal performance of the working-set policy. Specifically, we
claim that:
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Claim 3: Because command line references exhibit poor locality, a
working-set history prediction strategy would perform suboptimally.

In order to prove this claim, we compare the relative merits of this strategy when
locality is good (i.e., optimal performance of the working-set policy) and when
locality is poor (i.e., suboptimal performance of the working-set policy).

The studies, described in the balance of this chapter, examine the
phenomenon of locality in command line references in UNIX. Study 1 uses
Madison and Batson (1976)’s locality-detection method to determine if locality is
indeed present in command line references and if so, to characterize the extent of
locality in command line references. We conducted Studies 2 and 3 to corroborate
Claims 1-3. Study 2 examines Claim 1 – the question of whether locality is a ran-
dom behaviour or an artifact of user interactions. Study 3 provides evidence to
support Claims 2 and 3 (i.e., locality accounts for history usage and good locality in
command line references can enhance the working-set strategy for predicting
reuse candidates). Prior to describing these studies, user traces used in the stu-
dies are described.

Users’ Session Traces
Session traces used in subsequent studies are those collected by Greenberg

(1988a). A total of 168 users from four groups participated in his study:
a) experienced programmers — 36 senior computer science undergraduates with a

fair knowledge of programming languages and the UNIX environment.
b) computer scientists — 52 faculty, graduates and researchers from the Computer

Science Department at the University of Calgary having varying experience
with UNIX, but all being experts with computers in general.

c) non-programmers — 25 office staff and members of the Faculty of Environment
Design at the University of Calgary who had minimal knowledge of UNIX and
only used UNIX applications (e.g., word-processing).

d) novice programmers — 55 students from an introductory Pascal course with lit-
tle or no previous exposure to programming, operating systems or UNIX-like
command-based interfaces.

Each user’s trace data was strung together as one long session in which ses-
sion boundary commands like ‘‘logout’’ were retained. Command lines in which an
error occurred were excluded from the session. Each command line had a note
indicating whether csh history was used to help form the command line but noth-
ing indicating which history feature was used.

Study 1 : Does Locality Exist in User Interactions?
The initial question is: ‘‘Does locality, by Madison and Batson (1976)’s

definition, exist in user interactions?’’ This question is explored using two different
criteria to qualify repetition of user directives. The first criterion is based on the
repetition of full command lines (known as the command-lines case) while the
second criterion is based on the repetition of command names only (known as the
command-names case). Descriptive statistics were collected to characterize the
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extent of the locality (i.e., Rlocality) and the extent of the recurrence (i.e., R) in each
user session trace.

Results and Discussion
Locality was observed in both the command-lines case and the command-

names case. Table 1 summarizes the locality set sizes that were observed in each
case and the number of subjects, in each group and the sample as whole, that pro-
duced these locality set sizes. In each of the two subsequent sections, we examine
the nature of locality in each case.

Locality in Full Command Lines
The recurrence criterion in the command-lines case is fairly restrictive and

makes the algorithm sensitive to any variation in the command lines (i.e., a dif-
ferent ordering of the command line objects would terminate a locality set).
Despite this restriction, locality set sizes 1 to 12 and 14 were observed with 135 of
the 168 users producing a locality set size of 4, 49 of the 168 users producing a
locality set size of 6, 20 of the 168 users producing a locality set size of 8, and a
small number of users producing locality set sizes larger than 8 (see Cmd Line
columns in Table 1).

Figure 5 provides, by way of locality maps from one subject in each of the four
groups, a visual characterization of the nature and extent of locality exhibited by
the 168 subjects. The locality maps illustrate that while the extent of locality and
the locality set sizes vary, locality is exhibited at various periods in a user session.
Table 2 summarizes, by way of descriptive statistics, the extent of recurrence (i.e.,
R), the extent of locality (i.e., Rlocality), and the percentage of R that was accounted
for by Rlocality.

Many of the observed locality set sizes were attributed to novice programmers
(i.e., 50, 18, and 8 novice programmers produced locality set sizes 4, 6, and 8,
respectively). On average, novice programmers exhibited locality in 51% of their
sessions. 62% of their recurrences (R = 81%) were accounted for by locality
(Rlocality = 51%). The explanation for both of these results is that novice users do
not have a large command vocabulary and do not deviate substantially in the com-
mands they issue. In comparison, users in the other three user groups exhibited
far less locality (see Table 2) because they possess more skill and are more likely
to vary the construction of their command lines.

For each user and each observed locality set size, the average number of full
command lines in a phase and the average number of occurrences of the same
locality set were determined. Then, for each user group and the sample as a
whole, the mean and standard error for each of the two measures were computed.
Figure 6 plots the mean for the first measure (i.e., average number of command
lines in a phase) and Table 3 lists the mean and standard error for the first six
locality set sizes. Figure 7 plots the mean for the second measure (i.e., average
number of occurrences of the same locality set) and Table 4 lists the mean and
standard error for the first six locality set sizes. The graphs and tables illustrate
differences across the four groups for each of the two measures.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Computer Experienced Non Novice All

Set Scientists Programmers Programmers Programmers Subjects
Sizes Cmd Cmd Cmd Cmd Cmd Cmd Cmd Cmd Cmd Cmd

Line Name Line Name Line Name Line Name Line Nameiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 52 52 36 36 25 25 55 55 168 168
2 51 52 36 36 25 25 55 55 167 168
3 47 52 33 36 21 25 54 55 155 168
4 38 50 31 34 16 23 50 55 135 162
5 21 44 24 31 8 20 33 49 86 144
6 9 35 16 25 6 15 18 41 49 116
7 5 21 9 20 2 15 6 33 22 89
8 4 13 7 13 1 7 8 29 20 62
9 1 7 3 10 6 18 4 41
10 1 6 2 7 3 14 3 30
11 1 5 1 3 1 13 2 22
12 1 1 3 6 1 10
13 1 2 4 7
14 2 3 3 2 6
16 1 1
17 1 1
20 1 1
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Table 1: The number of users observed producing the locality set sizes for
the command-lines and command-names criteria.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
% of R Accounted

for by Rlocality
User No.

R Rlocality
Rlocality x 100% / R

Group of iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Users Std. Std. Std.Mean Err. Mean Err. Mean Err.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Computer scientists 52 69.4 1.1 17.0 1.2 24.4 1.6
Experienced programmers 36 77.7 2.0 26.7 2.5 32.9 2.3
Non programmers 25 68.3 1.7 25.0 2.8 36.1 3.6
Novice programmers 55 80.5 1.0 50.7 2.0 62.3 2.0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
All subjects 168 74.6 .8 31.3 1.5 40.4 1.6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 2: For all users and the command-lines criterion, the mean and
standard error of R, Rlocality, and percentage of R that was accounted for by
Rlocality are tabulated.
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Figure 5: Phase diagrams for four of the users, one from each user group
for the command-lines criterion. The bars delimit phases, the y-axis is the
locality set sizes, and the x-axis is the command line number in a user
session.
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Figure 6: A plot of the mean number of full command lines in a phase for
each user group based on user means as a function of locality set size.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Locality Set SizesGroup Statistic 1 2 3 4 5 6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Computer Mean 2.62 4.68 7.14 8.96 11.42 11.72
scientists Std. Err. 0.11 0.27 0.35 0.53 1.34 1.44

Experienced Mean 2.64 5.28 8.72 11.22 15.52 16.05
programmers Std. Err. 0.08 0.29 0.61 1.77 1.78 1.76

Non Mean 2.48 4.47 6.74 9.07 13.97 10.33
programmers Std. Err. 0.12 0.21 0.40 0.86 1.85 1.09

Novice Mean 2.68 8.87 12.46 17.01 20.90 37.70
programmers Std. Err. 0.05 0.52 0.90 1.05 2.31 6.08iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

All Mean 2.62 6.16 9.27 12.48 16.44 22.51
subjects Std. Err. 0.05 0.25 0.41 0.66 1.15 2.84iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 3: For the command-lines criterion, the mean and standard error
(σ/√ddn ) of the number of command lines in a phase for locality set sizes 1 to
6. For instance, the mean number of command lines in a phase for a
locality set of size 1 for subjects in the Computer Scientist group is 2.62
command lines.
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Figure 7: A plot of the mean number of occurrences of the same locality
set for each user group based on user means as a function of locality set
size for the command-lines criterion.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Locality Set SizesGroup Statistic 1 2 3 4 5 6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Computer Mean 2.72 1.57 1.23 1.10 1.01 1.11
scientists Std. Err. 0.16 0.07 0.06 0.04 0.01 0.11

Experienced Mean 3.51 2.07 1.37 1.23 1.61 1.09
programmers Std. Err. 0.38 0.20 0.09 0.10 0.27 0.06

Non Mean 2.12 1.28 1.17 1.03 1.00 1.00
programmers Std. Err. 0.19 0.06 0.06 0.03

Novice Mean 3.94 2.94 1.56 1.22 1.11 1.00
programmers Std. Err. 0.32 0.17 0.10 0.06 0.04iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

All Mean 3.20 2.09 1.37 1.17 1.22 1.05
subjects Std. Err. 0.15 0.09 0.05 0.03 0.08iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 4: For the command-lines criterion, the mean and standard error of
the number of occurrences of the same locality set for sizes 1 to 6. For
instance, the mean number of occurrences of the same locality set of size 1
for subjects in the Computer Scientist group is 2.72.
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Several users in the experienced programmer group with extensive program-
ming and UNIX experience generated locality set sizes of 9 and larger. This is not
surprising because experienced programmers have larger command sets, perform
sophisticated tasks, and have very well-learned behaviours. In contrast, all but
one of the subjects in the other three user groups have locality set sizes of 8 and
less because these subjects have smaller command sets and less experience with
UNIX and csh.

An examination of the mean number of occurrences of the same locality sets
reveals that users tended to repeat the same locality sets for smaller set sizes
(especially locality set sizes 1 and 2) more than for larger set sizes (i.e., size 4 and
up). A comparison of user groups with respect to the mean number of occurrences
of the same locality set indicates that novice and experienced programmers repeat
the same locality set more often (see Table 4 and Figure 7).

Locality in Command Names Only
Locality set sizes 1 .. 14, 16, 17, 20, and 29 were observed in the command-

names case (see Table 1). Figures 8, 9, and 10 and Tables 1, 5, 6, and 7 summar-
ize the extent of locality observed in the command-names case. Larger locality
sets were observed because activities repeat if command names repeat.

Many of the larger locality set sizes were produced by novice programmers.
On average, novice programmers have longer phases and repeated the same local-
ity set more often than the other three user groups. Unlike the command-lines
case, non-programmers, on average, have the next longest phases and they
repeated the same locality set about as often as novice programmers. In general,
computer scientists and experienced programmers were comparable in terms of
the size of their locality sets, the average number of command names in their
phases, and the average number of occurrences of the same locality set.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
% of R Accounted

for by Rlocality
User No.

R Rlocality
Rlocality x 100% / R

Group of iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Users Std. Std. Std.Mean Err. Mean Err. Mean Err.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Computer scientists 52 96.0 .4 52.3 1.8 55.0 1.9
Experienced programmers 36 95.2 .5 53.9 2.0 56.6 2.1
Non programmers 25 95.2 .7 75.4 3.3 79.1 3.3
Novice programmers 55 97.4 .2 82.9 1.6 85.1 1.6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
All subjects 168 96.0 .2 66.1 1.5 68.8 1.5iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 5: For command-names criterion, the mean and standard error of R,
Rlocality, and percentage of R that was accounted for by Rlocality.
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computer-scientist-15 with session length of 1348 lines

0 169 338 507 676 845 1014 1183
0
2
4
6
8

experienced-programmer-11 with session length of 1370 lines

0 172 344 516 688 860 1032 1204
0
2
4
6
8

10
12
14

non-programmer-18 with session length of 1339 lines

0 168 336 504 672 840 1008 1176
0
2
4
6
8
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12

novice-programmer-44 with session length of 1237 lines

0 155 310 465 620 775 930 1085
0
2
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6
8

10
12

Figure 8: Phase diagrams for four of the users, one from each user group
for the command-names criterion. The bars delimit phases, the y-axis is
the locality set sizes, and the x-axis is the command line number for a user
session.
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Command Names Only Criteria
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Figure 9: A plot of the mean number of command names in a phase for
each user group based on user means as a function of locality set size.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Locality Set SizesGroup Statistic 1 2 3 4 5 6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Computer Mean 2.59 5.01 8.82 12.29 15.77 21.39
scientists Std. Err. 0.05 0.14 0.44 0.75 0.89 1.32

Experienced Mean 2.64 5.40 9.24 13.24 15.72 20.63
programmers Std. Err. 0.06 0.19 0.54 1.04 0.84 1.66

Non Mean 2.84 6.54 13.37 20.59 26.47 36.50
programmers Std. Err. 0.12 0.39 1.55 3.78 3.74 5.67

Novice Mean 2.78 10.77 17.31 26.98 36.45 54.37
programmers Std. Err. 0.04 0.74 1.13 3.40 3.70 6.44iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

All Mean 2.70 7.21 12.37 18.66 24.28 34.84
subjects Std. Err. 0.03 0.32 0.55 1.40 1.60 2.81iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 6: For command-names criterion, the mean and standard error of
the length of phases for locality set sizes 1 to 6. For instance, the mean
number of command names in a phase for a locality set of size 1 for
subjects in the Computer Scientist group is 2.59 command names.
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Command Names Only Criteria
Locality Set Size
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Figure 10: A plot of the mean number of occurrences of the same locality
set of for each user group based on user means as a function of locality set
size for the command-names criterion.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Locality Set SizesGroup Statistic 1 2 3 4 5 6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Computer Mean 6.73 2.83 1.60 1.27 1.11 1.07
scientists Std. Err. 0.57 0.17 0.07 0.07 0.05 0.03

Experienced Mean 5.73 2.88 1.58 1.25 1.24 1.12
programmers Std. Err. 0.44 0.20 0.10 0.05 0.13 0.04

Non Mean 8.59 4.36 2.19 1.46 1.25 1.11
programmers Std. Err. 1.31 0.53 0.20 0.13 0.08 0.06

Novice Mean 10.84 4.79 2.23 1.47 1.24 1.20
programmers Std. Err. 0.77 0.31 0.19 0.11 0.06 0.06iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

All Mean 8.14 3.71 1.89 1.36 1.21 1.13
subjects Std. Err. 0.41 0.16 0.08 0.05 0.04 0.03iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 7: For the command-names criterion, the mean and standard error
of the number of occurrences of the same locality set for sizes 1 to 6. For
instance, the mean number of occurrences of the same locality set of size 1
for subjects in the Computer Scientist group is 6.73.
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Study 2 : Does Locality Exist By Chance?
Study 2 answers the question: ‘‘Is locality a randomly occurring behaviour or

is it a behaviour that arises from user-computer interactions?’’ Specifically, ‘‘Do
pseudo users generate locality sets in the same proportions as real users?’’ Pseudo
users generate randomly sequenced, but syntactically correct, command lines.
Note, we answer this question by examining the locality behaviour for the full-
command-lines case although examining locality behaviour for the command-
names-only case would have been appropriate as well.

Statistical Test
Real-user sessions represent one independent sample drawn from a popula-

tion. Pseudo-user sessions represent another independent sample drawn from a
population. The question is: ‘‘Are the locality behaviours exhibited in real and
pseudo-user samples those behaviours exhibited by individuals that come from the
same population?’’ If so, then both sample means would estimate the same popula-
tion mean for the locality measure. Otherwise, the sample means estimate two
distinct population means. The locality measure Ll(u) for a user u is the propor-
tion of the total observed locality that is of a given locality set size:

Ll(u) =
N (u)
nl(u)hhhhhh x 100% l = 1 .. 12, 14 and u = p,r.

where nl(u) represents the number of locality sets that were observed for locality
set size l for user u’s session, and N (u) = n1(u)+ . . . +n12(u)+n14(u). r denotes a
real-user sample and p denotes a pseudo-user sample. There are 13 such locality
measures which correspond to the 13 locality sets observed for real users.

A sampling experiment can be conducted which draws a sample of 168
pseudo-user session traces from the pseudo-user population. For each locality set
size l, the 13 sample means for the locality measure L

hh
l(u =p) can be measured.

This metric estimates the population mean µ for the locality measure Ll(u). When
this sampling experiment is repeated a large number of times (i.e., 1000), 13 rela-
tive frequency histograms based on the sample means L

hh
l(u =p) can be generated,

one for each locality set size l. Each relative frequency histogram approximates
the probability distribution of the sample mean L

hh
l(u =p). Specifically, if another

independent sample is drawn from the pseudo-user population, the mean of the
locality measures L

hh
l(u =p) for this sample would be well described by its relative

frequency histogram.

To test the claim that the mean locality measure L
hh

l(u =r) for real-user sam-
ples comes from the same sampling distribution as L

hh
l(u =p), we determined the

probability that the mean locality measure of L
hh

l(u =p) is equal to or more extreme
than L

hh
l(u =r). The probability condition is a statistical test of one tail of the sam-

pling distribution. The particular probability condition depends on which tail of
the sampling distribution L

hh
l(u =r) is located in. A small probability (i.e.,

P [L
hh

l(u =p) ≥ L
hh

l(u =r)] < α or P [L
hh

l(u =p) ≤ L
hh

l(u =r)] < α where α = .01) provides
strong evidence that such an event is unlikely to occur if the claim was true. 13
such one-tailed tests were performed, one for each observed locality set l, using the
corresponding sampling distribution.
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Method
Each sampling distribution for each observed locality set size was obtained

from a computer simulation of the sampling experiments. Each sample had 168
sessions corresponding to the 168 sessions in the real-user sample. In the sam-
pling experiment, the sequence of command lines for each real-user session was
randomly permuted using a different random number, to form the corresponding
pseudo-user session. 1000 pseudo-user samples were generated.

Each session (real and pseudo) was analyzed by the locality-detection algo-
rithm and a summary of detected locality sets was collected. Each summary
included 13 nl(u) values (l = 1 .. 12, 14) and total number of locality sets observed
(i.e., N (u) = n1(u)+ . . . +n12(u)+n14(u)). Then, the locality measure, Ll(u), for
each user sample u and each set size l was computed.

Sample means for each of the 13 locality measures, L
hh

l(u), for a real-user sam-
ple and 1000 pseudo-user samples were determined. Then, for each locality set
size l, a frequency histogram for the 1000 pseudo-user sample means L

hh
l(u =p) was

produced. A relative frequency histogram was generated by taking the frequencies
and dividing by the total number of samples (i.e., 1000).

Results and Discussion
Figure 11 displays 4 of the 13 sampling distributions of L

hh
l(u =p) that were

obtained from the sampling experiments. Table 8 lists, for each of the 13 locality
set sizes, L

hh
l(u =r) values for real-user sessions, probability tests, and probability

test values P. P values for all locality set sizes were less than .01. The claim that
the two groups come from the same population was rejected at the α = .01 level.
Therefore, locality is a behavioural artifact of user interactions and does not occur
by pure chance. Figure 12 illustrates the difference between L

hh
l(u =p) and L

hh
l(u =r).

Study 3 : Does Locality Enhance the Recurrence Picture?
This is a two-part study which examines two claims concerning two aspects of

Greenberg and Witten (1988b)’s study. In both parts of the study, we examine the
locality behaviour for the full-command-lines case although it would have been
appropriate to examine the locality behaviour for the command-names-only case.
First, does locality account for Greenberg and Witten (1988b)’s observed history
usage? Second, does limiting the history prediction strategy to locality situations
enhance the quality of the prediction?

Study 3A: History-for-Reuse Occurs Within a Locality
Claim 2 states that the fraction of the recurrent activities, those appearing in

a locality (i.e., Rlocality), represent a more meaningful estimate of reuse opportuni-
ties than the recurrence rate estimate (i.e., R). Recall, R is the percentage of the
session activities containing recurrent activities while Rlocality is the percentage of
the session activities containing phase activities.
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Figure 11: Relative frequency distributions of L
hh

l(u =p) for l = 1 - 4.
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Figure 12: L
hh

l(u =p), L
hh

l(u =r) versus locality set size.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Size l L

hh
l(u =r) Probability Test Valueiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 60.937 P [L
hh

1(u =p)≤60.94] 0.
2 27.515 P [L

hh
2(u =p)≥27.52] 0.

3 7.514 P [L
hh

3(u =p)≥7.51] 0.
4 2.486 P [L

hh
4(u =p)≥2.49] 0.

5 0.965 P [L
hh

5(u =p)≥0.97] 0.
6 0.368 P [L

hh
6(u =p)≥0.37] 0.

7 0.117 P [L
hh

7(u =p)≥0.12] 0.
8 0.065 P [L

hh
8(u =p)≥0.07] 0.

9 0.009 P [L
hh

9(u =p)≥0.01] 0.004
10 0.008 P [L

hh
10(u =p)≥0.01] 0.002

11 0.004 P [L
hh

11(u =p)≥0] 0.004
12 0.008 P [L

hh
12(u =p)≥0.01] 0.001

14 0.002 P [L
hh

14(u =p)≥0] 0.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Table 8: The L
hh

r,l values and the probability tests for the respective
locality set sizes and their corresponding values. The test is the
probability that the mean locality measure of L

hh
l(u =p) is equal to or more

extreme than L
hh

l(u =r). It involves the tail of the sampling distribution on
which the value of L

hh
l(u =r) is located (see Figure 11 for the location of the

value of L
hh

l(u =r) in the sampling distribution for l =1,2,3,4).
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Method
In order to verify this claim, we conduct two selection experiments. In the

locality-selection experiment, we identify those users who made use of the history
tool. Then, for these user’s session, we select only those activities appearing in
phases and count the number of activities that are formed using a history tool (i.e.,
hlocality) . This selection experiment would select a percentage of the activities in a
user’s session that is equal to Rlocality. In the random-selection experiment, we
randomly select the same fraction of the activities in the same user’s sessions and
count the number of activities that are formed using a history tool (i.e., hrandom).
Then, we determine Hlocality and Hrandom. Hlocality is the percentage of the activi-
ties appearing in phases that are formed with a history tool:

Hlocality =
htotal

hlocalityhhhhhhh x 100%

Hrandom is the percentage of the randomly selected activities that are formed using
a history tool:

Hrandom =
htotal

hrandomhhhhhhhh x 100%

Note, the value of Hrandom is equal to Rlocality because a random selection of a per-
centage of the activities in a user’s session (i.e., Rlocality) would also randomly
select a similar percentage of the activities formed using a history tool. Thus, the
value of hrandom is:

hrandom =
100

Rlocality x htotalhhhhhhhhhhhhhh

If Claim 2 is false, then activities formed using history tools would be equally
likely in phases as well as transitions. That is, the percentage of activities in a
user session formed with a UNIX history tool within phases Hlocality would be equal
to Hrandom and Rlocality.

However, if Claim 2 is true then the value of Hlocality would be substantially
greater than the value of Hrandom (i.e., Hlocality is greater than Hrandom which is
equal to Rlocality). Thus, hlocality should be substantially larger than hrandom. Note
that only 25% of the session activities (i.e., Rlocality = 25% which is based on user
sessions that involved history use) occur in a phase and less than 4% of the session
activities involve history use; both are small percentages (see Table 9). Thus, a
valid claim means that the selection systematically locates a large percentage of
history use in a quarter of the command lines.

We conducted the locality-selection experiment on the sessions for those users
who used the UNIX history tool. For each of these users, we determined the values
of hlocality, htotal, hrandom and Hlocality.

Results and Discussion
A within-subjects ANOVA test comparing hrandom and hlocality yields a

significant difference (F(1,88) = 65.1, p = 0). This confirms our claim that the
extent of locality Rlocality is a better estimator of reuse than the recurrence rate R.
On average, 65% of the command lines involving history use are issued within a
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
% of the History % of the Total

User No. of Rlocality Usage Occurring Session Involving
Group Users Std. in a Locality (H) History Usage

Mean Err. Mean Std. Err. Mean Std. Err.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Computer

scientists 37 16.3 1.5 60.7 3.8 4.1 .7

Experienced
programmers 32 26.5 2.6 64.4 3.7 4.5 .6

Non
programmers 9 25.7 5.9 60.4 12.1 4.4 2.1

Novice
programmers 11 46.7 5.3 83.1 6.1 2.1 .9

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
All subjects 89 24.7 1.7 64.8 2.6 4.1 .4iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 9: The mean and standard error of Rlocality, H and % of total
sessions involving history usage. Unlike the Rlocality values in Table 2,
these values are computed from only session traces of history users.

locality (see Table 9). This figure is two and a half times the number of command
lines involving history use that are selected by a systematic process (i.e., locality)
compared to that which a random process would have selected.

However, on average, 35% of history uses3 are not found inside a phase. One
possible explanation for the unaccounted 35% is that history uses may not be lim-
ited to the literal recall of a history item; they may include the modification and
recall of parts of previous command lines. If such history features (i.e.,
modification and partial recall) are used to form a command line, the modified
command line would break the locality set. Thus, the locality detection method
must be refined to alleviate the restricted definition of recurrences (i.e., literal
repetition of previous command lines) so that the repetition of modified command
lines is included in a locality set. It is difficult to verify directly our explanation
for the missing 35% history usage because our user session traces are not anno-
tated with the history feature that a user used. However, this explanation is
indirectly supported by two findings from our studies:
(1) In our exploratory study, we found that csh users used word designators and

modifiers (see Table 3 in Chapter 4). These features permit the recall and
modification of parts of previous command lines.

(2) In this study, we note that 83% of the novice programmers’ history uses were
accounted for by locality. This group of subjects were students taking an
introductory programming course with no previous exposure to UNIX and csh
history. Thus, their use of history would be limited largely to the simple
recall of previous command lines.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
3

Recall, the locality-detection method requires that the composition and makeup of in-
dividual items of a locality set remain unchanged throughout the phase. Thus, the 65% of
history uses found in phases are the history uses involving the literal reuse of commands.
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Study 3B: Locality and Prediction of Reuse Candidates
To corroborate the claim that the performance of the working-set history

prediction strategy (observed by Greenberg and Witten (1988b)) is suboptimal, one
needs to demonstrate two things. First, user sessions must exhibit poor locality.
Second, the performance of the working-set strategy during locality periods is
shown to be better than during the entire period of a user’s session.

Method
Two versions of each user’s session are required: a full user session S and a

restricted user session S ′. S ′ contains only command lines in S that are part of
phases or phase formations. Each S and S ′ trace is run through the working-set
algorithm, outlined in Figure 13, using various window sizes,
T = 1 .. 10, 20, 30, 40, 50. For each user and each T, the percentage of time that
the next command line is located within the current working set is computed.
Also, for each T, the average of this percentage for all users is computed.

Results and Discussion
As revealed in the full-command-lines case, on average, the extent of locality

Rlocality over a full user session S is 31% (see Table 10). This measure is substan-
tially less than R = 74%. However, Rlocality for the locality-only portions of a user
session S ′ is 90% and R is 88%. By removing command lines appearing in transi-
tions, the recurrence rate R and the extent of the locality Rlocality are much higher.
The resulting traces exhibit good locality and high recurrence rate, and more
importantly, the two metrics are essentially equivalent.

Figure 14 shows the performance of the prediction strategy for various
working-set window sizes when prediction is restricted to locality periods only and
when it is performed throughout a session. Hit percentages for the two predic-
tions are tabulated in Table 11. These results corroborate the computer memory
research finding which found that when locality is good (see S ′), so is the perfor-
mance of the working-set history prediction strategy. Thus, the performance of
the working-set history prediction strategy (S) is suboptimal4.

With the restricted user sessions, reuse prediction is, on average, 92% for S ′
compared to 67% for S with a window size of T = 10. In general, hit percentages
for a restricted user session (S ′) are higher than for a full session S at the same
recurrence distance T (i.e., 1 ≤ T ≤ 50). For T =10, the differential in prediction
performance is 26%. Doubling T results in a smaller differential in prediction per-
formance (18%) compared to that obtained for T =10. The incremental gain for
T >3 of restricted user sessions diminishes in comparison to full sessions. From the
data in Table 11, T =3 appears to be the threshold point.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

4
Another finding of computer memory research is that the working-set policy is the

most likely, among nonlookahead policies to generate minimum space-time for any given
program. In fact, Denning (1980) reports that experiments with real programs have found
that the working-set policy can be run with a single global control parameter value (i.e., T)
and deliver performance typically no worse than 10 percent from optimum.
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Given:
g an array cmd_line which holds n command lines in a session
g an array num_hits to accumulate the number of hits at various distances
g an array T to hold the T values of interest
g an array hit_percent to store the cumulative hit % for a particular T

int T[14] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50};

/* scan each item to find its nearest preceding match and note statistics */
for (i = 1 to n)

for (j = i to 1 by -1)
if (cmd_line[i] == cmd_line[j]) then {

distance = i-j
no_hits[distance] = distance +1
break;

}

/* compute the hit_percent for the distances indicated in T */
total = 0
t = 0
for (distance = 1 to n) {

total = total + no_hits[distance]
if (distance == T[t]) {

hit_percent[t] = (total/n) * 100
t = t + 1

}
}

Figure 13: A working set algorithm, from Greenberg (1988b), for
determining hit percentage for window sizes T = 1 .. 10, 20, 30, 40, 50.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
User Group Statistic R Rlocality R ′ R ′localityiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Computer Mean 69.4 17.0 85.7 89.5
scientists Std. Err. 1.1 1.2 1.0 .6

Experienced Mean 77.7 26.7 89.2 88.4
programmers Std. Err. 2.0 2.5 1.3 .6

Non Mean 68.3 25.0 80.9 87.5
programmers Std. Err. 1.7 2.8 1.8 .9

Novice Mean 80.5 50.7 93.1 91.5
programmers Std. Err. 1.0 2.0 .5 .4iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Mean 74.6 31.3 88.1 89.6All subjects Std. Err. .8 1.5 .6 .3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 10: The recurrence and locality metric values for the full user
sessions S and the restricted user sessions S ′ for each user group and the
sample as a whole.
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Figure 14: Hit percentage as a function of distance between recurrence.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
T S ′ S S ′ − Siiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 34.9 11.0 23.9
2 67.8 33.7 34.1
3 78.8 43.9 34.9
4 83.5 50.1 33.4
5 86.7 54.7 32.0
6 88.4 58.1 30.3
7 89.8 60.8 29.0
8 90.7 63.1 27.6
9 91.5 64.9 26.6

10 92.1 66.5 25.6
20 94.9 76.2 18.7
30 96.2 80.9 15.3
40 96.9 83.9 13.0
50 97.4 86.0 11.4iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 11: Hit % for various values of T for a full user session (S),
restricted user session (S ′), and S ′ − S.
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These results also demonstrate that a high recurrence rate in command line
references is not sufficient for a working-set policy to perform optimally. Rather,
the crucial factor is goodness of locality exhibited by command line references.
This is consistent with the computer memory research findings [Denning, 1980].

Since users do not exhibit good locality, the working-set history prediction
strategy will perform suboptimally. Conditioning techniques, like those proposed
by Greenberg and Witten (1988b), may help enhance the prediction of useful his-
tory candidates. However, as the above performance analysis clearly demon-
strates, history prediction during locality periods are more accurate than during
the whole session. Furthermore, the results in Study 3A indicate that 65% of his-
tory uses occur within phases.

Concluding Remarks
There are four key results from these studies of locality in command line

references. First, locality was exhibited in both the command-lines and
command-names cases by all 168 subjects who represent a diverse cross section of
UNIX users. Second, locality is a natural consequence of user interactions and is
not a randomly occurring behaviour. Third, a substantial percentage of history
usages (i.e., 65%) occurred within locality periods. Fourth, unlike program
memory references which exhibit good locality (i.e., > 90%), command line refer-
ences exhibit poor locality (i.e., 31%). This finding has implications for character-
izing reuse opportunities and reuse candidates because locality takes into account
logical clusters of command lines.

Our study of locality in user interactions along with Greenberg and Witten
(1988b)’s study of recency in user interactions, provide an extensive examination
of the applicability of computer memory research to the study of user command
line reference behaviour and to the performance of the working-set strategy for
predicting the (small) set of command line references that a user may need in the
near future. However, further research into other aspects of user behaviour are
needed before one can conclude that the concepts – working set and locality – are
applicable, in general, to other situations in human-computer interaction.

In addition, further refinements to the locality-detection algorithm are
required to allow for less restrictive determinations of a locality. The locality-
detection technique used in the analyses requires that the references remain
unchanged for the duration of a phase. As a result, the pattern matching com-
ponent is sensitive to slight changes or re-ordering of objects that make up a user
reference. The essence of locality is captured by this definition of locality, but in
an overly restrictive manner.

An alternative approach for identifying locality, described in Denning (1980),
is based on the frequency of segment faults (i.e., transitions are heralded by a
series of segment faults occurring in close succession). An examination of this
approach of identifying locality, along with a comparison of the results obtained
from using this technique against results obtained in our studies, would be infor-
mative. This study is left for future research.

In conclusion, there are two possible accounts for poor locality in user interac-
tions. First, poor locality may be due to the fact that users switch between
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parallel activities. By separating the different threads of parallel activities,
phases would be longer. In this case, the poor locality finding would suggest that
user interfaces need to provide tools and resources for managing parallel activities
and thereby support for sustaining locality for longer periods. Second, poor local-
ity may be due to the fact that a system imposes fewer constraints on users. As a
result, users are not forced to use the same method to accomplish their tasks; they
can use different variations which would result in less locality in user interactions.
Both accounts are conjectures and must be substantiated through a formal investi-
gation into the cause of poor locality.
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Chapter 6

User Effort in the
Command Specification Task

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

The task-artifact and behavioural studies, described in Chapters 2-5, examine
two different perspectives of the general question of why users do not make
greater use of history tools. Those studies have shown two possible reasons:
integrated history tools do not exist to support the seven uses of history tools and
designs of history-for-reuse tools do not take locality of user recurrences into
account. This chapter explores a third perspective related to the user effort
involved in issuing a recurrent operation. In particular, we explore the question:
‘‘Does the effort involved in using history tools to specify a recurrent operation
outweigh the effort involved in simply specifying the operation from scratch?’’

Also, our study uses a cognitive modelling framework to generate models
describing the human information processing operations and performance times
for the typing and history-tool methods. Since these models represent the corner-
stone of our analysis of user effort, it is important that their predictions be reason-
ably accurate. Therefore, we also examine the error in the models’ predictions.

We begin with a description of our user effort study and its findings. Then,
we present an experiment we conducted to compare the predicted times against
the observed times. Finally, we make some remarks regarding the cognitive
modelling methodology and ideas for future work.

User Effort Study
The primary objective of this study is to compare and contrast the user effort

associated with various ways of specifying recurrent commands based on an
analysis of the human information processing requirements. The next few subsec-
tions describe the following aspects of the study.
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g analytic methodology
g user effort
g command-specification task and methods
g constraints of the study
g estimates for predictions
g procedure
g results and discussion

Analytic Methodology
Cognitive modelling is a description and analysis of the knowledge and sub-

tasks used to carry out a task. This type of a task analysis is carried out with the
benefit of psychological models of human behaviour. The knowledge and task
descriptions produced in the analysis are cognitive models. These models provide
predictions about user behaviour (e.g., consistency, performance times).

There are four reasons for using cognitive modelling. First, it employs
psychological theories of human behaviour. Hence, predictions and evaluations
are grounded on these theories. Second, a goal of cognitive modelling is to strive
to predict average user behaviour to within 80% accuracy while expending 20% of
the effort normally required in prototyping and testing [John, 1988]. Thus, cogni-
tive models provide designers with analytic tools to predict, prior to prototyping,
how users will interact with computer systems in an approximate and reasonably
accurate manner. Third, cognitive modelling provides a scientific foundation upon
which we can systematically investigate and extend our investigations of user
effort. Specifically, we can extend our current study within this framework to
include tasks involving partial reuse and modification of recurrent commands or
even command generation.

Our study uses a cognitive modelling framework consisting of the Model
Human Processor (MHP for short) and Goals, Operations, Methods, and Selection
Rules (GOMS, for short). MHP is a general characterization of human information
processing. It consists of a system architecture and a set of quantitative parame-
ters of component performance. The architecture is made up of three processors –
perceptual, cognitive, and motor – and their associated memories, and a set of
principles of operation. Each processor operates serially within itself and con-
currently with all the others, subject to serial limitations imposed by data flow.
Elemental acts of the processors are referred to as operators.

GOMS is a representation for describing the user knowledge and actions
needed to perform a task. A task analysis in this framework involves subdividing
a task into the gross functions performed by each MHP processor and decomposing
these functions into sequences of operators. The resulting cognitive model is a
description of the sequence of human information processing operators involved in
carrying out a user task. One of the principal predictions made by these cognitive
models is task performance times. MHP assumes that operators act indepen-
dently of each other so that the time to perform a sequence of operators is the sum
of the times to perform each operator.

The MHP/GOMS framework permits the formulation of GOMS models at dif-
ferent levels of task analysis (e.g., unit task, keystroke, and immediate behaviour
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levels). The Keystroke Level Model is a GOMS model formulated at the level of
the MHP processes. It predicts the task performance time given the sequence of
operations for performing a task. The GOMS Model of Immediate Behaviour is
formulated within the MHP architecture [John, 1988]. Immediate behaviour is
the direct mapping of a stimulus into a response without problem solving or plan-
ning. Such behaviours are routine and are generally associated with reaction-time
tasks where the response to a stimulus is well known and initiated upon presenta-
tion of the stimulus without deliberation about what is appropriate (i.e., stimulus-
response compatibility tasks – SRC for short). Our study concentrates on com-
mand specification which includes many of the routine activities bridged by the
keystroke and immediate behaviour levels. Hence, our study makes use of both
GOMS models.

A longer description of the MHP/GOMS framework, the task description
language and the cost prediction scheme appears in Appendix C. An in-depth
description of this framework, its application, and its various formulations can be
found in Card, Moran, and Newell (1983) and John (1988).

User Effort
There are two user effort components: mental and physical effort. Mental

effort is expended when cognitive and visual processing resources are used while
physical effort is expended when motor processing resources are used.

We chose to examine user effort for three reasons. First, user effort is a fac-
tor which can influence a user’s decision to use history tools. Second, we sug-
gested in our studies of user recurrences that history tools can alleviate the physi-
cal effort in issuing a recurrent command, and a formal study of user effort would
corroborate this suggestion. Third, unlike many other factors influencing history
use, which are rather subjective or qualitative, user effort can be objectively exam-
ined and quantified.

Since we use the MHP/GOMS framework in our study, the user effort predic-
tions are functions of the types and numbers of elemental MHP acts (i.e., opera-
tors) and the task performance times. The numbers and types of MHP operators
are derived from a task analysis of each proposed method of command
specification. Task performance time is measured from the time after users gen-
erate commands in their mind to the time they submit them to a system.

Command-Specification Task and Methods
There are three subtasks involved in issuing a command: command genera-

tion, method choice, and command specification. Command generation is the task
of mentally generating the command to be issued. Method choice is the task of
choosing the method to externalize the desired command. Command specification
is the task of issuing the desired command. Our user effort analysis focuses on the
command-specification task. In particular, we are interested in the user effort
associated with issuing the desired command for a given method and design.

Our analysis does not deal with method choice because this decision-making
task is driven primarily by subjective considerations (e.g., personal preferences,
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methods that come immediately to mind, user’s awareness of the available
methods) and because cognitive models do not address such considerations.
Therefore, we opted to study user effort in an objective manner (i.e., given a
method and design, determine the user effort).

There are four reasons for ignoring a command-generation task. First, com-
mand generation involves plan generation and problem solving. which are beyond
the scope of current cognitive modelling efforts. Second, the GOMS models used in
our analysis assume that user behaviours are routine and involve no planning or
problem solving. Third, command generation is poorly understood in HCI (i.e., is
command specification intertwined with or separate from command generation?).
Finally, a study of command generation constitutes several theses in itself.

Because our understanding of the command generation task is limited, we
made two simplifying assumptions for our study. First, we assume that command
generation and command specification are independent. Second, we assume that
users have generated the full command prior to issuing it and this command is
available in working memory. These assumptions permit an initial investigation
of the issue of user effort involved in issuing a command. However, they may be a
gross simplification of what happens typically when users issue commands.
Hence, these assumptions represent a limitation of our study.

Two methods are available for specifying a recurrent command: typing and
using a history tool. Three history-tool designs involving recall and/or recognition
capabilities are examined. In the command feature class, a user recalls a feature
of the desired command to be invoked; in the history menu class, a user recognizes
the desired command from a visual display of the history; and in the step buffer
class, a user uses one or a combination of recall and recognition capabilities to
peruse and select individual history items.

Command Feature
This class of designs supports the recall of a command from a user history

based on a feature that the user provides to uniquely identify it. The four pro-
posed designs are based on different capabilities supported by csh.

Name – !name repeats the most recent command with the given name.
Number – !number repeats the command with the given number.
Argument – !?argument repeats the most recent command with the argument.
Last Command – !! repeats the most recent command.

History Menu
This class of designs presents a portion of a user history in a menu whose

items are selected using a mouse. Two variations are considered:

Popup – A user brings up the menu and scans and selects the desired command.
Static – A user scans a static menu and selects the desired command.
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Step Buffer
This class of designs allows the user to single step through a user history

from the most recent to the least recent to locate the desired command. Two of the
designs are directly supported in tcsh while the third is based on a related feature
available in csh and tcsh – file name completion:

Single Step – A user single steps through the history to the desired command.
Recall & Step – A user recalls how recent the command is and single steps to it.
History completion on command name – A user types a command name and

presses the history completion key. The system searches the history for the
most recent command matching the given name and presents it to the user. If
the matching item is not the desired one, the user presses the history comple-
tion key again and the system finds the next most recent command matching
the given name. This is repeated until the desired command is presented or
no more commands match.

Constraints of the Study
Our primary research objective is to explore the issue of user effort in the

specification of a recurrent command using cognitive modelling as the investiga-
tive methodology and not the development of the methodology. Thus, our study is
subject to the limitations that exist with the cognitive modelling approach.

One consequence of these limitations is that we are unable to model the task
of command generation or the task of deciding which method and design to use for
command specification because these tasks are not modelled by the methodology.
Despite this, there is value in studying the command specification task indepen-
dent of the command-generation and decision-making concerns. In particular, we
can explore the advantages and disadvantages of methods involving the use of his-
tory tools and typing.

A second consequence of these limitations is that we only model expert,
error-free, user behaviour associated with command specification. However, there
is value in such a study because we can examine the issue of user effort under
optimal conditions.

A third consequence of these limitations is that parallel processes are
modelled either as a series of processes or as a single process (i.e. the one requir-
ing the longest time to completion); the serial approach is simpler to implement
but leads to conservative predictions of task performance times while the one-
parallel-process approach is difficult to implement but more accurate. The one-
parallel-process approach is based on John (1988)’s proposal of using the critical
path technique to model parallel processes. The technique involves specifying the
component processes, their duration, and their inter-dependencies to form a net-
work and then determining the path through this network that takes the longest
time. We opted to use this critical path approach but we did not explicitly formu-
late the network in the course of generating our models; we simply selected the
process from the group of parallel processes that was considered to be the critical
one. Our informal use of the critical analysis approach (i.e., do not detail
insignificant parallel processes) is acceptable (but perhaps not as thorough in the
documentation of these parallel processes) as long as the predictions are
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reasonably accurate and we adhere to two important criteria of cognitive model-
ling. These two criteria are: a) adequate coverage of the total task (i.e., take into
account all first-order effects observed in the task domain) and b) approximation of
the underlying processes (i.e., cognitive models, as an engineering prediction tool,
need only include sufficient detail to do the design job) [Card, Moran, & Newell,
1983; John, 1988].

Aside from our study’s constraints, there is also the concern regarding our
claim that history-based, command-specification is a routine cognitive skill. Three
arguments are made in support of this claim. First, a characteristic of skilled rou-
tine performance is the absence of learning. This occurs when task performance
improves, as a result of learning, over many repeated encounters with a task until
it reaches a plateau representing skilled behaviour. The highly repetitive nature
of user interactions (recall the observed recurrence rate of 75%) suggests that
there are plenty of opportunities for issuing recurrent commands and using his-
tory tools. Hence, users can become skilled with history-based command
specification. Second, another characteristic of skilled routine performance is the
routine nature of a task. That is, people generally become skilled in whatever
becomes routine for them [Card, Moran, & Newell, 1983]. Since the subtasks (e.g.,
menu selection, search of a menu with a known organization, keystroke, recogni-
tion of a target item) associated with history-based command specification are pre-
valent in many of today’s user interfaces, they are a routine part of user interac-
tions and users can become skilled with such subtasks. Finally, the frequency
with which user interactions are repeated suggests that history usage can also
become routine. Therefore, in the context of our particular command specification
task, history use can be considered a routine cognitive skill.

Estimates for Predictions
Our study uses a number of MHP operators and application-specific parame-

ters. Each MHP operator is a specific elemental act of one of the three MHP pro-
cessors (e.g., MK is the keystroke operator associated with the motor processor M).
Each application-specific parameter characterizes an aspect of the UNIX command
specification task (e.g., n

hh
0 is the average number of characters in a UNIX command

name). The following subsections enumerate these operators and parameters.

MHP Operators
Table 1 lists the durations of the various MHP operators used in our analysis.

Three of the MHP operators were not available in Card, Moran, and Newell
(1983)’s original list and had to be obtained elsewhere: menu search, associative
memory retrieval, and menu selection with a mouse.

Menu Search. We estimated the menu search operator from an experiment
(see Appendix D) because there were no prior estimates. The experiment exam-
ined the task of visually searching a menu ordered from most recent to least
recent references of the menu’s items. Our empirical data suggest that the time to
search such a menu is approximated by a linear function of the position of the tar-
get item in the menu. We used the mean intercept and slope estimates obtained
for the locality conditions (see Table 5 in Appendix D). The reason for focusing on
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
TimeParameters for Component Processes (msec) Source

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Cognitive Operators

CE Execute a mental step 70 OO(240)
CM Retrieve from memory 1200 John(44)
CCRT Choice reaction time 340 CMN(74)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Perceptual Operators
PI Perceive an image 100 CMN(32)
PE Eye movement 230 CMN(25-28)
PS0

Menu Search – Intercept 690 Appendix D
PS1

Menu Search – Slope 110 Appendix D
PS(l) Menu Search – Combined 690 + 110 l Appendix Diiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Motor Operators
MB Press a button 70 CMN(69)
MK Type a character

Best typist (135 wpm) 80 CMN(264)
Good typist (90 wpm) 120 CMN(264)
Average skilled typist (55 wpm) 200 CMN(264)
Average non-secty typist (40 wpm) 280 CMN(264)
Worst typist 1200 CMN(264)

MPM
(l) Point to the lth item in menu −107+223log2(l +1) MSB(165)

MDM
(l) Drag to the lth item in menu 135+249log2(l +1) MSB(165)

MH Home to mouse or keyboard 360 CMN(237)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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CMN(32) [Card, Moran, & Newell, 1983] on page 32.
Appendix D See Table 5, Appendix D.
John(44) [John, 1988] on page 44.
MSB(165) [MacKenzie, Sellen, & Buxton, 1991] on page 165
OO(240) [Olson & Olson, 1990] on page 240.

Table 1: MHP Operators used in the user-effort analysis.

locality rather than non-locality behaviour is that our studies in Chapter 5 suggest
that history tools for reuse are extremely useful during periods where clusters of
user command line references recur (i.e., phases) as opposed to periods in which
user command line references are shifting from one locality set to another (i.e.,
transitions).

Associative Memory Retrieval. A recent extension to the MHP/GOMS frame-
work, prediction of user behaviour in command-abbreviation tasks, provided an
estimate for the cost of retrieving a completely arbitrary association between a
stimulus word and its required letter-combination [John, 1988]. Because several
of our history-based designs involve an associative form of memory retrieval (e.g.,
actions for the history task, a number for a recurrent command, an argument from
a recurrent command), we assume that this estimate is appropriate for our pur-
poses. However, our memory retrievals are not necessarily arbitrary associations.
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Thus, John (1988)’s estimate may be somewhat conservative for our study (i.e., it
provides an upper bound). The appropriateness of using this estimate is examined
later in an experiment.

Menu Selection with a Mouse. Fitts (1954) demonstrated that the time to
move a distance A to acquire an object of size W varies with A and W:

MT = a +blog2(2A /W) Eqn. (1).

Recently, MacKenzie (1989) noted that when A is small and W is large, the log
term in Eqn. (1) is negative and that this is theoretically unsound. Instead, MacK-
enzie (1989) proposed the following corrected formulation of Fitts’ Law:

MT = a + blog2(A /W+1) Eqn. (2).

Using this formulation, MacKenzie, Sellen, and Buxton (1991) empirically deter-
mined values for a and b for point and drag movement tasks involving a mouse.
These results are used as estimates for our two kinds of mouse selection operators
(see Table 1). The ‘‘point with mouse’’ operator involves moving a mouse to an
object and selecting it (e.g., static menu selection) while the ‘‘drag with mouse’’
involves moving a mouse to an object with the mouse button held down and select-
ing it by releasing the button (e.g., popup menu selection).
We assume that the mouse is always located W units above the menu and that the
height of each menu item measures W units. Therefore, to move to the lth item in
the menu, the distance travelled is lW and the resulting log term is replaced by
log2(l+1).

Application-Specific Parameters
Table 2 lists the values for parameters characterizing UNIX command

specification and history use. They include: probability of a command line having
no argument, average number of characters in a command name and command
argument, and average number of arguments. The values for all but two parame-
ters are derived from an analysis of Greenberg (1988a)’s UNIX command traces.
We elaborate on our choice of the values for the two exceptions.

The value for the probability of locating a command in each menu position
(pl) is chosen to simulate the locality behaviour and is identical to the one used in
our menu search experiment. We did not use the same probability distribution
observed in our studies of locality in Chapter 5. The reason is that the full range
of locality set sizes (observed for real user sessions of 500 or more user commands)
cannot be recreated in our two experiments (i.e., menu search and accuracy) in
which user sessions were only 100 commands long. In addition to scaling down
the length of a typical user session for the purposes of our experiment, we scaled
down the locality set sizes that occur and we used a probability distribution that
reflects the observed trend in the distribution of these 8 locality set sizes (i.e., a
large number of locality sets of size 1 to 4). For the same reason as that presented
for the menu search operator (see Appendix D), our study focuses on locality
rather than non-locality behaviour.

The value for the average number of command lines with the same command
name in a locality set (e) is derived as follows. Our analysis of Greenberg (1988a)’s
UNIX user traces indicates that no more than three command lines beginning with
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Parameters for Characteristics of UNIX Values

Command Specification & History Usage Mean ± SDiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Probability of Command Line

pa With no arguments .37 ± .19iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Probability of search item at menu position l =1 to 8

pl Small locality sets .26,.24,.22,.20,.02,.02,.02,.02iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Average Number of

e Similar command lines examined 2
a Command arguments 1.56 ± .52iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Average number of characters in
n
hh

0 Command name 3.28 ± .57
n
hh

A Command arguments 5.31 ± 1.37iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Average Number of Menu Items Examined

l =1
Σ
8

lpl Small locality set 2.72
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 2: Table of estimates related to characteristics of UNIX command
specification and UNIX history usage required for our current study.

the same command name occur within the same locality set. We did not examine
the user traces to derive the exact probability distribution because it would involve
a great deal of work. Instead, we assumed that all three cases occur with equal
probability. Therefore, e is the expected value of observing 1, 2, and 3 occurrences
of a command line with the same command name in a locality set (i.e.,

e = E (s) =
s =1
Σ
3

sp (s) = 2).

Procedure
Using MHP as a characterization of human information processing, we gen-

erate a description of the MHP operations involved in the command-specification
task for each proposed design (i.e., we generate a cognitive model). The resulting
task description appears in Appendix E. The user effort associated with each pro-
posed design is the sum of the operations in the associated cognitive model (see
Appendix E). Table 3 contains the user effort equations obtained by substituting
the values for the application-specific parameters.

Our analysis assumes that typing is the default course of action to take for
command specification. Therefore, whenever a history tool is used, the user must
switch from the default method (i.e., typing) to the history-based method. In all
the history-based designs, this switching operation is manifested as an additional
mental operation to retrieve the actions for the design from long-term memory.
This memory retrieval requires a longer cognitive cycle CM and represents the
penalty for switching to a history-based method from the default typing method.
Our assumption of a default method (i.e., typing) and thus a penalty for using the



88 Chapter 6: User Effort in the Command Specification Taskhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Mental Physical SystemProposed Designs Effort Effort Effortiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Typing 17.5CE 10.5MKiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Command Feature

!! 2CM + 3CE 3MK
!name CM + 7.3CE 5.3MK
!number 2CM + 5CE 5MK
!?argument 2CM + 9.3CE 8.3MKiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

History menu

Popup CM + 3CE +
l =1
Σ
8

plPS(l) 2MH +
l =1
Σ
8

plMDM
(l) S

Static CM + 3CE +
l =1
Σ
8

plPS(l) + PE 2MH +
l =1
Σ
8

plMPM
(l)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Step Buffer

CM + 4.7CE + PS0
+ 2.7PS1

+
Single step

2.7PI
3.7MK 2.7S

Recall & step 2CM + 5.7CE + PS0
+ PS1

+ PI 3.7MK S
Command name

with history
completion

CM + 9.3CE + 2PS1
+ 2PI 6.3MK 2S

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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c
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c
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c
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Table 3: The user effort associated with each command-specification
design after substituting for the values for the application-specific
parameters. The user effort is partitioned into mental, physical, and
system effort components. Note, in order to simplify the notation, we use
S to represent system response time. However, the value for S may be
different for different designs because they may take different amounts of
system time to perform.

history-based method is reasonable because, instead of providing the command
directly, users are performing an additional task (i.e., using an abstraction vehicle
like history tools to produce the command).

The primary focus of our analysis is to examine the mental and physical
effort involved in each design proposal. To facilitate this analysis, we partitioned
the user effort associated with each design into the mental and physical com-
ponents as well as a system effort component (see Table 3). The mental effort com-
ponent contains all cognitive and perceptual operators for a design. The physical
effort component contains all simple motor, menu selection, and keystroke opera-
tors for a design. The system effort component contains all user pauses, in a
design, for system response S. Note, in order to simplify the notation, we use S to
represent system response time in all the designs. However, the value for S may
be different for different designs because they may take different amounts of sys-
tem time to perform. In our analysis, we make sparing reference to the system
effort component and in most cases, we ignore this component.
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Cognitive models are primarily tools for predicting user behaviour but they
are also useful as ‘‘tools for thought’’ [Newell & Card, 1985]. That is, MHP/GOMS
embodies a theory of human information processing and in the course of doing the
cognitive modelling, user interface designers are made aware of the human infor-
mation processing requirements of a particular design in the form of the number
and variety of MHP operators involved. However, cognitive models as tools for
thought have been underrated especially in light of the fact that current cognitive
models and their predictions have many limitations and are subject to further
improvements. Because current cognitive models are still in need of further
development, it is premature to place most of the attention on the predictions
derived from cognitive models (e.g., Gray, John, Stuart, Lawrence, and Atwood
(1990) and MacLeod and Tillson (1990)) and to place little attention on the
insights derived from cognitive modelling. Thus, as part of our findings, we also
present the insights derived from our analysis. Furthermore, we use the task per-
formance times and MHP estimates to aid in the comparison of designs. In partic-
ular, numerical estimates (see Table 4) are used to quantify the user effort
required in each design.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Predicted Times (msecs.)

Mental Physical SystemProposed Designs
Effort Effort Effortiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Typing 1220 10.5MKiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Command Feature

!name 1710 5.3MK

!number 2750 5MK
1

!?argument 3050 8.3MK
!! 2610 3MKiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

History Menu
Popup 2399 720 + 577 S
Static 2629 720 + 289iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Step Buffer
Single step 2790 3.7MK 2.7S
Recall & step 3700 3.7MK S
Command name with

history completion 2270 6.3MK 2S
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 4: The user effort equations in Table 3 after substituting for the all
MHP operators except MK. Note, unlike the other designs in the command
feature category, the !name design does not require any mental retrievals
including the mental retrieval of the command name because the
command name is already in working memory. Note also, in order to
simplify the notation, we use S to represent system response time in all
the designs. However, the value for S may be different for different
designs because they may take different amounts of system time to
perform.
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Results and Discussion
Our comparative analysis of command specification designs is divided into

three parts. The first part compares the user effort associated with each history-
based design class: command feature, step buffer, and history menu. The second
part compares user effort across the three history-based design classes by examin-
ing the advantages and disadvantages of using recognition versus recall versus a
combination of recognition and recall. The third part compares the use of typing
against the use of history tools for specifying a recurrent command.

Human Performance within a Class of History Designs
Command Feature Designs. While design !! is less powerful than design

!number, they are comparable in terms of the mental and physical operations that
are involved (see Table 3). They both require two memory retrievals: one for the
method and the other for the command number or an association between the gen-
erated command and the previous command. However, design !number1 takes
more time with increasing number of digits in a command number because of
additional cognitive cycles CE and keystroke operators MK. Because the predicted
times for the two designs are comparable and design !! takes slightly less time, the
balance of the analysis uses design !! to represent both designs.
Designs !name and !?argument represent two different ways of recalling a
recurrent command: by name or by argument. There are two reasons why !?argu-
ment takes more time than design !name. First, UNIX command arguments are
longer than command names (compare n

hh
A and n

hh
0 in Table 2) and this results in

additional cognitive cycles CE and keystroke operators MK. Second, an extra
memory retrieval CM is required to choose a command argument which uniquely
retrieves the command. Such a retrieval is not required in design !name as the
name is available in working memory. The additional cognitive complexity in
design !?argument may explain why only 2 of the 5 subjects in our exploratory
study made use of the !?argument feature while all 5 subjects used the !name
feature (see Table 2a in Chapter 4).

History Menu Designs. The popup menu design requires system response and
drag-with-mouse operators while the static menu design requires eye-movement
and point-with-mouse operators (see Table 3). The static menu design requires
slightly more mental effort because of eye movement (see Table 4).
While both our mouse selection tasks involve moving a mouse to acquire an object,
the tasks have different task difficulty levels2. MacKenzie, Sellen, and Buxton
(1991) report an index of difficulty of .25 secs/bit. for the drag-with-mouse opera-
tion as opposed to .22 secs/bit for the point-with-mouse operation. Also, for an 8-
item menu, a drag-with-mouse operator takes, on average, twice as long as a
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1
In any intensive user session (i.e., more than 99 commands), a command number

should, on average, contain 3 digits. When a command number has only one digit, the two
designs are identical.

2
The log term in Eqn (2) is known as the index of difficulty and carries the units ‘‘bits’’

(because the base is ‘‘2’’). The reciprocal of the coefficient b is the index of performance
which is the human rate of information processing for the movement task.
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point-with-mouse operator (see the second value in physical effort in Table 4). We
conjecture that the drag-with-mouse operation is more difficult compared to the
point-with-mouse operation because of the tension involved in holding down the
mouse button as the mouse is moved. Without even considering the S operator in
the popup menu design, the time to perform the static menu design is slightly fas-
ter than the popup menu design (see Table 4).
Other design considerations point favourably to the static menu design. In partic-
ular, it provides continuous user feedback of a history’s contents because it
remains on a user’s screen while popup menu users must bring up a menu to
glance at its contents. Furthermore, a drag-with-mouse operation in the popup
menu design has more potential for user error due to failure to hold the mouse
button down while making a selection. On the other hand, a static menu does
incur screen real estate costs but such costs can be minimal because a typical
locality-set-based history menu contains one to five items (see Table 1 in Chapter
5). However, the menu may be obscured by other overlapping windows and users
need to perform extra operations to unveil the menu. Nevertheless, the advan-
tages of feedback, less errors, and less effort outweigh these disadvantages.
Therefore, the balance of our analysis will use the static menu as the prototypical
history menu design.

Step Buffer Designs. In all three step buffer designs, a user must pause after
each stepping operation to wait for the system to respond (S) with the retrieved
command (see Table 4); the number of pauses is proportional to the average
number of items examined prior to a selection. There are more pauses in the sin-
gle step and command name with history completion designs than in the recall &
step design.
On the other hand, in the recall & step design, a user must accurately recall the
position of a desired command and single step directly to it. The extra mental
retrieval operation in this design results in more mental effort (3.7 secs.) compared
to the other two step buffer designs (2.3 secs. and 2.8 secs.).
The command name with history completion design requires more physical effort
than the other two designs because of the additional keystrokes required to type a
command name. However, it requires less mental effort compared to the other two
designs. In general, minimizing the use of limited cognitive resources and thus
mental effort is important as it ensures that these resources are available for other
tasks. Assuming average or better typing skills (MK <= 200 msecs.), the command
name with history completion design is a faster design.

Human Performance between Classes of History Designs
Pure Recall Designs. All command feature designs and the recall & step

design are pure recall designs; they exploit a user’s ability to recall characteristics
of recurrent commands. Design recall & step requires more mental effort (see
Tables 3 & 4) than all three command feature designs because of the perceptual
elements of the design (e.g., confirmation of a system retrieval prior to selection).
However, design !?argument requires more physical effort than any of the other
pure recall designs because it requires more keystroke operators (8.3 see Table 4).
Note, an alternative to the !?argument design would be to choose a substring to
identify the argument which would require fewer keystrokes but it would be at the
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expense of more mental effort associated with determining the appropriate sub-
string (i.e., an extra CM operator); the additional mental effort with the
!?substring_of_argument design would be more than the savings in physical effort.
Because of the considerable physical and mental effort required in the !?argument
and recall & step designs, we ignore them in the subsequent analyses.

Pure Recognition Designs. All history menu designs and the single step
design are pure recognition designs; they exploit a user’s perceptual/recognition
abilities by providing a visual interface to a user history. The static menu design
requires less mental effort than the single step design (2.6 secs compared to 2.8
secs.). If users are average or better typists (MK <= 200 msecs.), the single step
design requires less physical effort compared to the static menu design (1.0 secs.
compared to .7 secs) because single-step cursor operations are faster. However,
users with poor typing skills (MK >= 280 msecs.) will be faster with the static
menu design rather than the single step design because the homing-to-device and
menu selection operations are faster. Also the single step design requires system
response time, once for each item examined, while none are required for the static
menu design. This is not an issue on fast systems.

Pure Recall versus Pure Recognition Designs. The !name recall design
requires less mental effort than either of the two recognition designs because its
associated retrieval operation involves a working-memory retrieval CE which is
simpler than the visual search operations PS(l) in the two recognition designs (see
Tables 1 & 3). However, the three recall designs – !!, !?argument and recall & step
– require more mental effort than the two recognition designs because they involve
long-term memory retrieval CM (see Tables 1 & 3).
All pure recall designs and the single step recognition design require typing skills
(see Table 4) while the history menu designs require skill with a mouse. The phy-
sical effort in the static menu design (1 sec.) is more than the physical effort in the
recall designs when users are better than average typists (MK < 200 msecs.).
However, if typing skills are poor (MK >= 350 msecs), the static menu design
requires less physical effort than all the recall designs.
Assuming that system response time is negligible, S = 0, Figures 1 and 2 plot the
time to perform each proposed design as a function of keystroke operator times
MK; Figure 2 is Figure 1 extended to include a worst case typist (MK = 1200
msecs). From Figure 2, we observe that the static menu design is superior to all
recall designs when a user’s typing speed is poor (MK >= 400 msecs).

A Combined Recall and Recognition Design. The command name with history
completion design is a combined recall and recognition design; it exploits recall as
well as perceptual and recognition abilities. Users must provide the command
name as a selection pattern and must inspect the retrieved command to accept or
reject it. While the memory retrieval time is small, because the command name is
available in working memory, this design requires perceptual, cognitive, keystroke
and system response operators. In general, this combined recall and recognition
design provides no substantial benefits compared to the pure recall or pure recog-
nition designs.
Compared to the pure recall designs, this design is neither superior in cognitive
(2.3 secs.) nor physical effort (6.3 MK). In fact, the !name design and this design
are similar with respect to retrieval of a command name but the !name design
does not require the extra perceptual, cognitive, motor, and system response
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Figure 1: The time to perform each design is plotted as a function of
keystroke times (MK = 80, 120, 200, and 280 msecs.) The pure recall and
pure recognition history designs are denoted by unfilled graphical markers
and crosses, respectively. The combined recognition and recall history
design is denoted by an unfilled graphical marker with a cross in the
center. The typing design is denoted by the black box.

operations (see Table 3). When a user’s typing skill is poor, all pure recall designs,
except for !?argument, require less time than this design.
Compared to the two pure recognition designs, this design requires less mental
effort. However, users with average to worse typing skills (MK >= 200 msecs.)
require more physical effort to use this design (see Figure 2). If system response
time (S > 0) is considered, the performance time for this design will be higher.

Typing versus Using a History Tool
Typing requires the least mental effort compared to any history method (see

Table 4) because we assume that the command is already in working memory and
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Figure 2: Figure 1 extended to include a non-typist keystroke time (i.e.,
MK= 1200 msecs.). The time to perform each design is plotted as a
function of keystroke times (MK = 80, 120, 200, 280, and 1200 msecs.) The
pure recall and pure recognition history designs are denoted by unfilled
graphical markers and crosses, respectively. The combined recognition
and recall history design is denoted by an unfilled graphical marker with a
cross in the center. The typing design is denoted by the black box.

neither long-term memory retrieval nor visual search are involved. There are only
cognitive operations associated with the selection of command line words from
working memory and the initiation of motor operations for keystrokes MK. As
well, typing requires no point-and-select and no system response times. However,
it requires the largest number of keystroke operators (10.5 – see Table 4). As a
result, this method is the worst for issuing a recurrent command when non-typists
(MK = 1200 msecs.) are involved (see Figure 2). If users are expert typists (MK =
80 msecs.), this method is the fastest. However, in the case of non-expert typists,
there is always at least one history-based design faster than typing despite the
fact that all history-based designs require a memory retrieval for the history
method (CM = 1200 msecs.).
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The !name design is faster than typing and all other history designs when
users have good to average non-secretarial typing skills (120 msecs. (i.e., 90 wpm)
<= MK <= 280 msecs. (i.e., 40 wpm) – see Figure 2). This occurs because it
requires the least mental effort (1.7 secs.) of all history-based designs and requires
half the physical effort of typing (5.3 MK compared to 10.5 MK).

The fastest recognition design, static menu, is the third fastest history design
for users with average non-secretarial typing skills (MK = 280 msecs. (i.e., 40
wpm)) and is the fastest history design for users with worse-than-average, non-
secretarial, typing skills (MK > 280 msecs. (i.e., 40 wpm) – see Figure 2). Further-
more, the combined recognition and recall design, command name with history
completion, is faster than typing for users with worse-than-average, non-
secretarial, typing skills (MK > 280 msecs. (i.e., 40 wpm) – see Figure 2).

Accuracy of the Cognitive Models’ Predictions
An important concern with modelling user behaviour (i.e., typing commands

and using history tools) in a different task domain is whether the two GOMS
models support the underlying activities and whether the cognitive model predic-
tions are reasonably accurate. While some of the activities considered in our study
are those used in the development of the two GOMS models (Keystroke Level
Model and GOMS Model of Immediate Behaviour), there is a new activity (i.e.,
menu search) whose estimate had to be obtained.

Also, in the interest of keeping both GOMS models simple, the details of men-
tal operations like long-term memory retrieval [John, 1988] and ‘‘mentally prepar-
ing’’ to execute physical operators [Card, Moran, & Newell, 1983] were not ela-
borated. A mental operator is used to represent such operations. As described
earlier, we assume that the time parameter of such operations are estimated by
the mental retrieval operator that John (1988) determined. However, it is unclear
whether this is a reasonably accurate estimate of the time to perform the retrieval
activities that are part of the history-tool method.

In order to resolve the two accuracy concerns (i.e., being able to model and
predict history-tool activities and to use the current estimate of mental retrieval
time for our study), we selected a subset of the designs examined in our study and
ran an experiment to collect actual task performance times. Then we compared
the cognitive models’ predictions against that of the observed performance times to
assess the predictive accuracy of the models.

Method
The four selected designs are the typing method and one design from each of

the three history-tool classes: recall by argument, popup menu, and single step
buffer. All subjects performed all four tasks a number of times with the tasks
being administered in a random order. The reason for combining the trials of all
four tasks instead of blocking the trials by task is to mimic a typical user session
in which the particular task used to issue a recurrent command is not known a
priori.
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Subjects
18 paid students and staff participated in the experiment. All subjects had

knowledge and experience with UNIX, had previous experience using a mouse, and
had varying typing skills ranging from touch typists to two-finger typists.

Materials and Apparatus
A nine-item history list was used. Items were organized from the most recent

to the least recent. In the popup-menu task, the eight most recently referenced
items ere visible in the menu. The most recently referenced item appeared at the
top of the menu and the 8th most recently referenced item appeared at the bottom
of the menu. The stimuli were UNIX command lines and are listed in Table 5. For
reasons similar to those in the menu search experiment, menu search features like
item length and distinguishing characters (e.g., #) were either neutralized or
absent.

The experiment made use of a SUN 3/50 workstation consisting of a high-
resolution graphic display with a mouse and keyboard. A simple window manager
– MGR – from Bellcore was used to program the experiment. The SUN display was
divided into three windows. The top window contained instructions to the sub-
jects. The bottom window displayed an error message whenever a subject made a
mistake (e.g., selecting an inappropriate key on the keyboard). The middle win-
dow was the primary interaction window in the experiment. A stimulus was
presented to a subject in this window and a subject’s response was cued and ini-
tiated through this window.

Tasks
The experimental task is a test task consisting of two subtasks. Subjects

were presented with a UNIX command line whose words were jumbled and they

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Practice 0 Practice 1 Real Testiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

tail -5 other rm -i bkup/* lpr -Plw *.c &
head -5 Msgs cp bkup/* ../ dbx main core
cat m* > Msgs mv mbox bkup mv a.out main
cat msg1 msg2 ls -alt mbox cc -c main.c &
tail -f save pwd; du -s . co -r4 main.c
ls -l > save rm -rf srcdir lint -h test.c
mv msg4 save ls -lt srcdir co -r2 test.c
mv msg0* dir du srcdir | p rlog -l test.c
ls -a dir | p alias p more make -f cleaniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

Table 5: The menu items used in the validation experiment.
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had to unjumble it to form a legal UNIX command line3. This unjumbling task
simulates command generation with the result that the unjumbled command is
cached in a subject’s working memory. After unjumbling the command, subjects
pressed the ‘‘carriage return’’ key. Then, subjects were cued to perform one of the
four command specification tasks: TYPE, PATTERN, STEP, or MENU <please use the
mouse>. The TYPE cue refers to the typing task which involved typing out the
whole generated command line followed by a ‘‘carriage return’’. In the other three
cued tasks, subjects retrieved the generated command from a history using the
cued history task.

The recall-by-argument task involved mentally selecting any word other than
the first word of the generated command line and using it as a retrieval pattern.
The retrieval is specified by typing the characters ‘!?’, followed by the argument
and terminated with a ‘carriage return’.

The single-step-buffer task involved stepping through the history list an item
at a time. To step to the next most recent history item, the ‘j’ key is pressed. To
step to the previous most recent history item, the ‘k’ key is pressed. These keys
are typically alternative forward/backward cursor keys in most UNIX applications.
When the desired command appears, selection is made with a ‘carriage return’.

The popup-menu task involved selecting the generated command from an
eight item menu. The menu pops up when the middle mouse button is held down.
A menu selection is made by dragging the mouse cursor down to the item, while
holding the middle button down, and then releasing the middle button. If the gen-
erated command does not appear in the menu, a null selection is made by releas-
ing the mouse button while the cursor is positioned either above or below the
menu area.

Procedure
Prior to the start of an experimental session, subjects performed a typing

speed test. Each session consists of two practice blocks of test trials and a real
block of test trials. The first practice block consists of 4 sets of 9 trials each. In the
first set, subjects are presented with each stimulus in the practice block to unjum-
ble and type-in – one at a time from the least recent to the most recent. If an error
is made, they repeat this unjumbling and typing task. In the other three sets,
subjects practice each of the three history tasks independently. Note, each subject
was randomly assigned to a practice order with an equal number of subjects for
each practice order.

The second block of trials gives a practice run of the real thing. Subjects are
shown each item in the stimulus set, from the least recent to the most recent, in a
combined unjumbling and typing task. Then, subjects work through 48 test tasks;
21 of which are typing and the remaining 27 are equally divided amongst the
three history-based command specification tasks. The particular cued task is ran-
domly assigned.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

3
Ambiguities relating to this unjumbling step are minimized but some UNIX com-

mands can be ambiguous in the absence of a real task context. Therefore, we tried to
choose arguments that would suggest what the appropriate unjumbled command should be
(e.g., cat file1 file2 rather than cat file2 file1).
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The real block of test trials follows the same procedure as the second practice
block but there are 87 test tasks; 39 of which are typing and the remaining 48 are
equally divided amongst the three history-based tasks.

Results and Discussion
For each of the four tasks, we generated a task description (see Appendix F).

Table 6 lists the predicted performance time associated with each task. Except for
S and MK (determined empirically for each subject), all MHP operators were
obtained from the literature (see Table 1). Each subject’s keystroke time, MK, was
obtained from a timed typing task (i.e., typing time is divided by the number of
characters they typed from a 471 character piece of text). The mean keystroke
time was 270 ± 20 (18)4 msecs. The system response time, S, was measured in the
trials for the pop-up menu task. The mean system response time was 220 ± 4
(278) msecs.

In each trial, one of the four tasks is randomly assigned to the subjects. As a
result, part of the performance time includes a choice reaction time. This is the
time required to react to the requested task by initiating the correct task response
sequence. Since there are four possible tasks from which the correct response is
chosen, reaction time is a function of the time to make one of the four possible
choices. According to Card, Moran, and Newell (1983), this choice reaction time is:

CCRT = 150
t =1
Σ
4

ptlog2(1 + 1/pt)

where pt is the probability of an occurrence of task t or equivalently, the fraction of
the trials containing task t. Each of the three history-based tasks appears in 16
trials while the typing task appears in 39 trials for a total of 87 trials.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Tasks Predicted Timesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Typing PI + CCRT + (4 + 3a +
A =0
Σ
a

nA)CE + (1 + a +
A =0
Σ
a

nA)MK
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Recall by argument PI + CCRT + 2CM + (nA + 4)CE + (nA + 3)MKiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Popup menu PI + CCRT + CM + 2CE + MH + MDM

(l) + S + PS(l)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Single step buffer PI + CCRT + CM + PS(l) + lPI + (l + 2)CE + lMB + MKiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 6: The predicted task performance time as a function of the relevant
MHP operators. a is the number of arguments in a UNIX command. nA is
the number of characters in word A of the UNIX command. l is the serial
position of the target item. S is the system response time.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
4

The notation 270 ± 20 (18) represents a mean value of 270, a standard error of 20,
and a sample size of 18.
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A subject’s real test trial was discarded if an error was committed in the
course of the trial (e.g., incorrect selection, mistyped argument or command name).
Each experimental task has a number of different instances related to the parame-
ters of the task. These parameters are obtained from the equation for the
predicted times to perform each task (see Table 6).

Typing task: a is the number of arguments in the command line and
A =0
Σ
a

nA

is the number of characters in the command line (excluding spaces).

Recall by argument: nA is the number of characters in the argument.

Popup menu: l is the menu position of the desired command line (note: l =
9 represents an item not on the menu).

Single step buffer: l is the number of steps to the desired command line.

Table 7 lists the various instances of each experimental task in terms of the task
parameter values. All subjects’ trials were separated into the appropriate task
instances. Table 7 lists the total number of trials and error-free trials associated
with each task instance. Figure 3 plots the mean observed times for the 27
instances of the 4 tasks as a function of the predicted times. The y = x line pro-
vides a reference for comparing the mean observed time to the predicted time.

The measure used to describe the error in the prediction is eo(i):

eo(i) =
O
hh

i

O
hh

i−Pihhhhhh x 100%

where Pi is the predicted time for the ith task and O
hh

i is the mean observed time
for the ith task. The magnitude of the difference in observed and predicted times
is expressed as a proportion of task performance time (i.e., observed time). This is
a more meaningful measure than the absolute difference since different tasks have
different task complexity and hence different task performance times.

Our reason for expressing the error in terms of the percentage deviation from
the observed time rather than the percentage deviation from the predicted times –
Card, Moran, and Newell (1980)’s approach – is that the error measure provides a
more accurate assessment of the deviation from the value of interest (i.e., observed
time) and hence, the accuracy of the predictions made by a model. John (1988)
used the eo(i) metric in her analysis of the accuracy of the cognitive models gen-
erated using the GOMS Model of Immediate Behaviour.

A goal of engineering models is to make predictions averaging within 80% of
actual performance. As the data in Table 8 indicate, the prediction errors in 21
instances of the 4 tasks are well within the 20% error criteria. Of the 6 task
instances having greater than 20% prediction error, 1 of them is associated with
the single-step-buffer task (i.e., l = 1). We conjecture that because of an experi-
mental bias for items at the top of the history list, users have more familiarity
with recent command lines and are more adept at handling a history retrieval
involving the most recent command line. This skill coupled with a simple
response scheme (single stepping using cursor keys) results in a faster task perfor-
mance time compared to the task performance times of items further down in the
history list. This conjecture is supported by a similar result in our menu search



100 Chapter 6: User Effort in the Command Specification Taskhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Number of

Tasks & Values of Parameters Number Error-free
Parameters for Task Instances of Trials Trialsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Typing, (a,
A =0
Σ
a

nA) (2, 11), (2, 12), (3,11) 702 673
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Recall by argument, nA 1, 2, 3, 4, 5, 6 288 261iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Popup menu, l 1, 2, 3, 4, 5, 6, 7, 8, 9 288 278iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Single step buffer, l 1, 2, 3, 4, 5, 6, 7, 8, 9 288 269iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 7: For each experimental task, the task instances are enumerated
in terms of the task parameter values. Also, the total number of trials and
the number of error-free trials for each experimental task are presented.
Note: In the menu task, an l value of 9 represents an item not appearing
on the menu.
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Figure 3: Plot of the mean observed times, along with error bars, as a
function of the predicted times. The line is a y = x line.

experiment (see the l = 1 case in Figure 4 of Appendix D). This anomalous
behaviour is not evident in the popup-menu task because any user skill with
recognizing the most recent item is offset by the less than optimal menu selection
behaviour associated with a more complex response scheme. Note, we observed
that subjects occasionally made adjustments in the drag operation for over/under-
shooting the target. Also, the menu search experiment and the single-step-buffer
design use a simple push-button response scheme.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Predicted Mean Observed

Times Times (msecs.) % Error >20%Task
(msecs.) Mean ± SE (N) eo(i) Erroriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Typing
2 args, 11 chars 5690 4150 ± 70 (361) -37% †
2 args, 12 chars 6030 4470 ± 140 (144) -35% †
3 args, 11 chars 6170 5170 ± 130 (168) -19%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Recall by argument
1 character 4270 3100 ( 1) -38% †
2 characters 4610 4310 ± 220 (65) -7%
3 characters 4950 5100 ± 260 (51) 3%
4 characters 5290 4490 ± 190 (62) -18%
5 characters 5630 4580 ± 290 (41) -23% †
6 characters 5970 4720 ± 240 (41) -26% †iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Popup menu
position 1 3549 3470 ± 200 (35) -2%
position 2 3804 3290 ± 80 (54) -16%
position 3 4018 3530 ± 90 (35) -14%
position 4 4208 3790 ± 120 (34) -11%
position 5 4383 3940 ± 120 (36) -11%
position 6 4549 4410 ± 260 (18) -3%
position 7 4707 4460 ± 200 (17) -5%
position 8 4859 4870 ± 190 (18) 0%
position 9 5007 5010 ± 280 (31) 0%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Single step buffer
position 1 3090 2330 ± 120 (35) -33% †
position 2 3440 2930 ± 100 (36) -17%
position 3 3790 3560 ± 150 (51) -6%
position 4 4140 3970 ± 140 (36) -4%
position 5 4490 4530 ± 170 (31) 1%
position 6 4840 4990 ± 290 (30) 3%
position 7 5190 5190 ± 190 (15) 0%
position 8 5540 6110 ± 290 (18) 9%
position 9 5890 6430 ± 210 (17) 8%iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 8: For each of the 27 instances of the four experimental tasks, the
predicted times, the mean observed times (along with standard error and
number of trials), the error as a percentage of mean observed times and
predicted times, and the cases where the error is greater than 20% are
presented. MK is the mean keystroke rate 270 ± 20 (18) msecs.

The other 5 of the 6 task instances having greater than 20% prediction error
are associated with the two tasks involving typing (i.e., typing and recall-by-
argument). In all cases, the predicted times are longer than the observed times
(see Table 8). We conjecture that the higher prediction error is attributed to an
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inaccurate estimate of the keystroke time MK. Note, in the interest of simplifying
the processing of the subject’s data, we decided not to capture the raw keystrokes
used in the typing and recall-by-argument tasks. However, the MHP/GOMS
framework only deals with error-free behaviour and we need to take into account
the possibility that subjects might make typing mistakes and take time to correct
them. We accounted for this time by measuring a keystroke time MK (i.e., time
per keystroke) that included a fraction of the time to detect and correct typing mis-
takes (i.e., we used the mean typing time – the time to type a 471 character piece
of text divided by the number of characters in the subject’s typed document). In
hindsight, this typing task has a number of problems. First, typing a 471 charac-
ter piece of text is somewhat different from typing a UNIX command line (11 or 12
characters long) or an argument (1 to 6 characters long). Second, there are more
instances of typing mistakes, and hence more time spent recovering from typing
mistakes, in a typing task involving a 471 character piece of text than in a 11 or 12
character command line. Thus, our estimate of MK is inflated. It may have been
more appropriate to have subjects perform a series of timed typing tasks involving
UNIX command lines.

Table 9 lists the mean and range of the absolute prediction error for the 4
tasks by combining all instances of the same task. Both the popup-menu and

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Number Absolute % ErrorTasks of Tasks eo(i) Mean (Range)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Editing - CMN (404) 12 10% (0% – 37%)
Drawing - CMN (404) 15 19% (1% – 51%)
Computing - CMN (404) 5 24% (9% – 39%)
Combined 32 16% (0% – 51%)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Command abbreviation - John (36) 3 26% (0% – 71%)
Fitts & Seeger Experiment - John (39) 4 16% (2% – 33%)
Duncan Experiment - John (40) 4 8% (7% – 10%)
Morin & Forrin Experiment - John (42) 6 23% (13% – 38%)
Combined 17 19% (0% – 71%)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Typing commands 3 30% (19% – 37%)
Recall by argument 6 19% (3% – 38%)
Popup menu 9 7% (0% – 16%)
Single step buffer 9 9% (0% – 33%)
Combined history designs 24 11% (0% - 38%)
Combined 27 13% (0% - 38%)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 9: The absolute prediction error in 3 different types of tasks
(editing, drawing, and computing tasks) examined by Card, Moran, and
Newell (1980) (abbreviated as CMN with page numbers in brackets); in 4
different stimulus-response compatibility (SRC for short) tasks examined
by John (1988); and 1 command typing and 3 different history tasks that
we examined. In the case of Card, Moran, and Newell (1980)’s results, we
recomputed the prediction error using eo(i).
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single-step-buffer tasks have a mean absolute prediction error of less than 10%
(i.e., 7% and 9%) while the recall-by-argument task has a mean absolute predic-
tion error of 19%. The typing task is the only task that does not meet the 20%
error goal.

All three history tasks involve at least one retrieval operation (i.e., retrieval
of the task method – see Table 6). A comparison of the absolute prediction errors
of the instances of these 3 tasks reveals a range of 0% to 38% and a mean absolute
error of 11% (see Table 9). This result indicates that the estimate we used for CM
is an appropriate estimate for the mental retrieval of a task method. Only the
recall-by-argument task has an additional mental retrieval operation for selecting
the appropriate command argument for the retrieval pattern (see Table 6). Table
8 reveals that the predicted time in all instances of this task is higher than the
mean observed time and the range of the absolute prediction error is 3% to 38%.
However, because there is a possibility that an inflated estimate of keystroke time
MK may lead us to predict a higher task performance time, we are unable to
assess the appropriateness of using the same mental retrieval operator for the
second retrieval operation.

An important question is how good the predictions for our command
specification task are compared to GOMS predictions for other tasks. We are
aware of only two studies which examine the accuracy of the predictions made by
the cognitive models generated using the MHP/GOMS framework.

The first study is the experiment to determine how well the Keystroke Level
GOMS Model predicts performance times [Card, Moran, & Newell, 1980]. 32 dif-
ferent task-system combinations were examined in the experiment. 14 different
tasks (4 editing, 5 drawing, and 5 computing) and 11 different systems (3 editors,
3 drawing packages, and 5 command executives) were considered in the experi-
ment. The mean absolute prediction error for the editing, drawing, and computing
tasks are 10%, 19%, and 24%, respectively (see Table 9 for the range of absolute
prediction errors). The mean absolute prediction error for the combined group of
tasks is 16%.

The second study is a series of experiments to determine how well the GOMS
Model of Immediate Behaviour predicts performance times for a number of
immediate behaviour tasks [John, 1988]. The group of tasks included a set of 3
command abbreviation recall tasks and 2 different sets of spatial SRC tasks (Fitts
& Seeger experiment and Duncan Experiment) and a set of symbolic SRC tasks
(Morin & Forrin Experiment) drawn from the literature. John (1988) generated
predictions for response time performance for the 4 sets of immediate behaviour
tasks and compared them to the observed response time (see Table 9). The mean
absolute prediction errors for the 4 sets of tasks are 26%, 16%, 8% and 23% and
the mean absolute prediction error for the combined set of tasks is 19%.

Our own experiment examined the accuracy of using both GOMS models (i.e.,
Keystroke Level Model and the GOMS Model of Immediate Behaviour enhanced to
include an estimate for the menu search operator). The mean absolute prediction
errors for the 4 tasks are as good if not better than the mean absolute prediction
errors of the tasks examined by Card, Moran, and Newell (1980) and John (1988).
Compared to the mean absolute prediction errors for the combined group of tasks
examined in each of the other two studies (i.e., 16% and 19%), our combined group
of tasks has a mean absolute prediction error of 13%.
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Remarks about Our Studies
In closing, we make two sets of general remarks concerning the problems of

cognitive modelling and the possibilities for future work.

Problems with Cognitive Modelling
The MHP/GOMS framework assumes expert, error-free, routine cognitive-

skilled user behaviour and stipulates that predictions are approximate. Typically,
users are rarely true experts and their behaviours are rarely error-free. This was
especially evident in the typing task in our experiment where only one subject was
a fast and accurate touch typist. In many instances of the test trials, subjects
were observed to be correcting their typing mistakes. Typing errors may be, in
part, caused by the fact that subjects were unfamiliar with the keyboard and its
layout. Thus, the predicted times represent a lower bound because the observed
performance times will typically include non-error-free or suboptimal behaviours.

Recent extensions to the MHP/GOMS framework reveal that not all mental
operators are of similar duration as was initially assumed in Card, Moran, and
Newell (1983)’s original proposal. Our menu search operator consists of percep-
tual and cognitive operators. It is an example of a mental operator which is not
constant; its value is dependent on where the target item is located in a menu.
Also, the designs examined in our study involved a number of different mental
retrievals which are assumed to require equivalent duration (CM = 1200 msecs.).
A finer grained analysis and better distinctions between proposed designs would
be possible if we could differentiate these various mental operators.

In many places in our task analysis, it was difficult to decide whether certain
operators were needed because of a lack of a detailed set of guidelines and rules
for doing the task analysis. John (1988) points out that it is often difficult to know
what the underlying mechanisms are that are driving the internal processes
involved in accomplishing a task and whether the analysis successfully explains
and predicts performance. This problem is not unique to MHP/GOMS but per-
meates all forms of cognitive modelling. In general, current cognitive models are
guesses of what the underlying mechanisms are. John (1988) suggests that only by
producing more successful cognitive modelling cases can we hope to extract the
elements of truth about our guesses and to formulate task analysis rules and
guidelines. Of course, user interface designers also need adequate training in cog-
nitive modelling in order to generate not only reasonably accurate predictions but
also valid ones.

We also need more comprehensive descriptions about MHP operators because
not all operators involve a single act of the MHP processors. In fact, many MHP
operators (e.g., PS(l), CM, MDM

(l), MPM
(l)) are composed of several actions of the

MHP processors. Aside from the estimates for these operators, the description
should provide an operational definition, as in the case of John (1988) (see pp. 44).
Otherwise, user interface designers may inadvertently incorporate the same
operator twice in their calculations. A case in point is the operator based on Fitts
Law. Experiments to determine the estimates associated with Fitts Law (See
Eqn(2)) generally involve a series of reciprocal tapping tasks. Each tapping opera-
tion delimits the end of one tap and the start of the next tap. Thus, the elapsed
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time between two taps inherently incorporates the cognitive and motor operations
associated with each tapping task.

Future Work
We took one approach to investigating the issue of user effort. However,

because of the emphasis placed by this approach and the simplifying assumptions
that were made, there were a number of factors that could not be examined. We
discuss possibilities for further analyses.

While task performance times and number and types of MHP operators
represent one type of mental-effort measure, mental workload and user errors
represent other types. Given the limitations in distinguishing certain mental
operations, mental workload may offer a better assessment of mental effort. How-
ever, there is very little mental-workload-related work in cognitive modelling
(except for [Lerch, Mantei, & Olson, 1989]); the bulk of this research is done in
human factors.

The question of which method, history or typing, causes more errors is impor-
tant as errors generally mean additional effort for error recovery. Because history
tools require less physical effort, the potential for making motor errors (typing
errors) is reduced, especially for poor typists, but with the increased mental effort,
there is more potential for cognitive errors. By the same token, if a memory
retrieval in one history-based design requires less effort but tends to be more
error-prone (i.e., it retrieves the wrong history item) then this design is not favour-
able because more overall effort, attributed largely to error recovery, is required.
Therefore, it would be informative to examine the issue of user errors but the
MHP/GOMS framework does not currently address user errors.

While our analysis did not consider the command generation task, we make
some conjectures about how this task influences our results. We conjecture that
typing would be greatly influenced by command generation. Specifically, users
need to expend quite a bit of effort to generate each word in a command and to
order the words properly (i.e., according to the Keystroke Level Model, one CM
operator per word in the command). By comparison, we conjecture that users may
not need to generate the full command in order to use the proposed history
designs. Rather they just need to recognize the command from a menu or generate
some part of it so that it can be used as an appropriate criteria (e.g., command
name, argument, command number) for retrieving the command. Such recall or
recognition operations may take longer than the estimates used in our current
study, but certainly not as long as the ones for typing. Therefore, if command gen-
eration is factored into our user effort analysis, typing might perform even worse
because of the extra mental retrieval operators. Of course, these conjectures need
to be verified by an extended MHP/GOMS analysis.

This study considered the literal reuse of a command which is a natural
follow-on to the behavioural study of user recurrences (Chapter 5). It would also
be instructive to model and analyze the effort to reuse parts of a previously issued
command. However, the main obstacle to such an investigation is the uncertainty
surrounding the nature of menu search involving partial matching (i.e., selecting
an item that partially matches the search item). As in our literal search case, it is
unclear what menu search model is appropriate for partial search or whether the
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model for partial search is linear. Thus, an experiment must be conducted to
determine an estimate for menu search involving partial match.

Concluding Remarks
This chapter examines the mental and physical effort in a command

specification task – the task of specifying a recurrent UNIX command. Two dif-
ferent command specification techniques are examined: retyping the entire com-
mand or using a history tool. The extended Model Human Processor and GOMS
framework is used to model and predict performance for the typing and history
methods. The time to perform cognitive and motor operations for each method and
the numbers and types of MHP operators involved are used as measures of mental
and physical effort. Three different classes of history-based command specification
designs are examined. The history-based designs cover existing as well as
hypothetical designs. They also cover designs exploiting a user’s recall and/or
recognition capabilities.

The main observations from this study are:
(1) Compared to typing, command feature designs favour less physical effort at

the expense of more mental effort. They require a range of mental effort (i.e.,
1.7 secs to 3.1 secs.); !name requires the least mental effort of all history-
based designs.

(2) In history menu designs, the static menu design requires less physical effort
than the popup menu because it does not require holding a mouse button
down for menu selection. Despite the small overhead costs associated with
screen real estate for a menu and switch in focus of attention, the benefits of
the static menu design are reduced performance time, constant feedback of the
contents of a history, and no pauses due to the display of a menu.

(3) All step buffer designs require pauses for system response; the number of
pauses depend on the number of items a user examines. If system response
times are negligible, pauses are not a deterrent. These designs minimize
either physical effort or mental effort.

(4) Most pure recall designs favour less physical effort at the expense of more
mental effort. Mental effort is attributed to a memory retrieval of some
feature of a desired command (e.g., command number, argument, recency).
The design with the least mental effort, !name, is the one which retrieves a
name from working memory as opposed to long-term memory. Therefore,
recall designs that require fewer or simpler mental operations as well as fewer
physical operations will compete favourably with typing, especially when
users have average non-secretarial typing skills or better.

(5) Most pure recognition designs have selection techniques that use a different
input device. Therefore, there is extra overhead (.7 seconds) associated with
homing to different input devices and this may be somewhat annoying. How-
ever, fast recognition designs are superior to recall designs for users with poor
typing skills (i.e., less than 40 wpm) because they require less physical effort
(1 sec.) and less mental effort (compare 690 + 110l msecs. for menu search to
1200 msecs. for a mental retrieval operation). Furthermore, recognition
designs provide ancillary benefits such as visual display of a user history.
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(6) The primary operators in the pure recall designs are memory retrieval and
typing operators. As such, they generally perform better than the pure recog-
nition designs when expert and good typists are considered. The bulk of the
mental effort in a pure recognition design is attributed to visual search; it does
not require typing. In relation to the pure recall designs, the recognition
designs using menus are more advantageous for less skilled typists when
their constant menu selection times become less significant compared to keys-
troke times.

(7) Compared to the pure recall designs, a combined recall and recognition design
is neither superior in mental (2.3 secs.) nor physical effort (6.28 MK). Com-
pared to the two pure recognition designs, the combined design requires less
mental effort but more physical effort for users with average or worse typing
skills (i.e., less than 55 wpm). In general, the combined design in our study
provides no substantial benefits compared to the pure recall or pure recogni-
tion designs. This design requires a large variety of operators: cognitive, per-
ceptual, keystroke and system response operators.

(8) Typing requires less mental effort (1.2 secs.) than all the proposed history-
based designs. It favours less mental effort at the expense of more physical
effort; it requires the most keystroke operators (10.5MK). Therefore, with less
skilled typists, typing actually incurs a heavy penalty. In fact, it requires the
most effort when compared to all history-based designs when non-typists are
involved. An average non-secretarial typist (40 wpm) and a typist unfamiliar
with a keyboard can specify a recurrent command faster and with less overall
effort using a static menu design than typing.
In summary, while a history-based design for command specification requires

more mental effort, it requires less physical effort when compared to typing. The
additional mental effort is due to memory retrieval of actions. However, if simpler
mental retrieval operations are used (e.g., working-memory retrieval or visual
search), history-based designs can compete favourably with typing. The fastest
recall and recognition designs, !name and static menu, are the ones that minimize
mental effort and physical effort.

Our study of the accuracy of the predictions generated by the cognitive model
using the MHP/GOMS framework revealed that the predictions are well within
the goal of 80% of mean observed performance times. We selected one design from
each of the three classes of history-based designs and typing examined in the user
effort study. The mean absolute prediction error of the three history-based
designs is 11% while the typing method had an absolute prediction error of 30%.
The higher prediction error for the recall-by-argument and typing tasks are attri-
buted to a poor technique for estimating the keystroke operator MK. Conse-
quently, the predicted times were much higher than the observed times due to an
inflated estimate of the keystroke time. In terms of using the existing estimate for
the mental retrieval operator, our empirical data indicates that it is a good enough
estimate for the operation associated with retrieving the method for executing the
history design. Because our estimate of the keystroke operation may be inflated,
we were unable to determine the suitability of using the mental retrieval operator
in the recall-by-argument task for choosing a distinctive command argument as a
selection pattern. However, the absolute prediction error of this task is 19% and
this is within the 20% error goal.
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Chapter 7

Conclusion

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

The idea of allowing users to make use of data and actions from an earlier
part of their interactions within the context of their current interactions is the
basis of many history-based tools that system designers have provided. However,
these tools are not an integral part of any user-support tool suite. Furthermore,
there is little empirical evidence that such history tools are effective and little
information concerning the important characteristics of a history-based, user sup-
port tool. Therefore, a natural research question is whether history tools can, and
do, enhance and support user interactions?

This question is examined from three different perspectives: design, user
behaviour, and human information processing. Our first set of studies, in
Chapters 2 and 3, examined history-tool artifacts to identify seven history uses, to
assess the degree to which current artifacts support all seven history uses, and to
propose requirements and options for enhancing current designs. Our second set
of studies, in Chapters 4 and 5, examined real user behaviours for information
about command recurrences and history-tool usage. Our final set of studies, in
Chapter 6, examined the mental and physical effort associated with issuing a
recurrent command and the implications that mental and physical effort have on
the design and use of history tools.

Except for the first set of studies, the primary focus is on history tools which
support the literal reuse of previous interactions. Other history uses and other
ways to reuse activities (e.g., partial reuse) have not been examined in detail.
However, based on our studies of reuse, the results are favourable towards the use
of history tools for supporting recurrent user interactions.

Contributions
There are four major contributions of this thesis. The first is that our

findings, along with Greenberg (1988b)’s, represent an accumulating collection of
information about the behavioural, psychological, technological, and user-task fac-
tors influencing the design and use of history tools. Our studies represent only
one of two formal examinations of history tools and the only ones to have exam-
ined the cognitive and behavioural merits and drawbacks of history tools for user
support. Our primary findings are as follows:
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(1) We uncovered seven potential uses of history (i.e., reuse, inter-referential I/O,
error recovery, navigation, reminding, user modelling, and user interface
adaptation).

(2) We observed that current history tools do not support all seven history uses
and we proposed requirements and options for history tools that integrate all
seven history uses.

(3) We observed that csh and tcsh users make limited and simplistic use of his-
tory tools.

(4) We observed that users make repeated references to a small group of com-
mands at certain intervals in their session. We demonstrated that this user
behaviour, locality of command recurrences, is a more meaningful characteri-
zation of command recurrence behaviour both in terms of accounting for his-
tory use and predicting reuse opportunities and reuse candidates.

Locality and working set were examined previously within the context of win-
dow references [Henderson & Card, 1986a; Card, Pavel, & Farrell, 1984], but
our study of locality replicated these earlier observations for a finer grain of
behaviour: issuing command directives to a system. This replication and gen-
erality is an integral part of any research, and especially research in HCI.
More importantly, our research demonstrated, in a formal way, that locality in
user commands is not a randomly occurring behaviour but a behaviour which
arises as a direct result of user-computer interactions.

The Greenberg (1988b) study provided the initial observation that users
repeat their commands frequently, especially recently-issued commands. Our
studies followed up on his study by corroborating his findings and demonstrat-
ing that locality is a better characterization of command recurrence. Green-
berg (1988b) also provided insights into the performance of different history-
prediction techniques that exploit this recency characteristic. We proposed an
alternative which takes locality into account.

(5) We used cognitive modelling to generate predictions about the mental and
physical effort involved in the task of specifying a recurrent command for a
given method and design. Thus, we do not model the task of deciding which
method (i.e., history tool or typing) or which history-tool designs to use for
command specification. We assumed that the command had been generated
and appeared in the user’s working memory. We also assumed that users
exhibit expert, error-free task performance behaviour. Within the scope of
these constraints, we drew three conclusions. First, most of our proposed his-
tory tool designs favour less physical effort at the expense of more mental
effort while re-typing favours less mental effort at the expense of more physi-
cal effort. Second, the increased mental effort associated with using history
tools can be alleviated by designing history tools that exploit simpler mental
operations (e.g., working memory retrievals and perceptual processing). For
example, memory retrieval could be limited to working memory and percep-
tual processes could be used rather than long-term memory retrievals. Third,
despite the penalty associated with switching from typing to history tools,
non-expert typists using history tools do expend less overall effort.
The second thesis contribution is the demonstration of the value of using dif-

ferent research methods to study the impact that history tools have on user
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interactions. Design is a complex endeavour and requires input from many dif-
ferent perspectives including user task, technology, user behaviour, and human
information processing. These various perspectives offer insights into task
requirements, technological barriers, behavioural factors, and human information
processing constraints. Furthermore, it is important, in any investigation of fac-
tors influencing the use of a tool, to involve different granularities of analysis
because this can provide macroscopic and microscopic perspectives on important
problems and issues which otherwise would not be evident. This thesis is unique
in that it examined the prospects of history-based user support from three dif-
ferent perspectives and grains of analysis (i.e., design, user behaviour, and human
information processing), demonstrating how the various studies can provide
insights into the design problem (i.e., history-based user support tools).

The third thesis contribution relates to our findings regarding locality in com-
mand recurrences. These findings provide insights not only for the design of
history-based user support tools but also for the design of user interfaces in gen-
eral. In particular, locality is a basic behavioural phenomenon which user inter-
faces need to consider and address. Our study revealed poor locality in command
recurrences and this observation leads to two interesting conjectures that merit
further investigation. One conjecture is that current interfaces do not provide ade-
quate tools and resources so that users can keep unrelated work in separate
workspaces. As a result, a user history is a collection of different threads of user
activities rather than a single thread of user activity. A second conjecture is that
poor locality is an indication of a good user interface design. A good user interface
design imposes fewer constraints on users and as a result, users are better able to
accomplish their tasks with less trivia because of user interface flexibilities. Also,
this means that users are not forced to use the same method to accomplish their
tasks; they can use different variations. This variation would be manifested in the
form of less locality in user interactions. A study into the cause of poor locality is
required before we can conclusively explain the observation of poor locality in user
interactions.

The final contribution of this thesis is the contributions made in the area of
cognitive modelling. These contributions include:
(1) An estimate for a new Model Human Processor operator (i.e., visual search of

a menu whose items are organized in the order in which they were last refer-
enced starting with the most recently referenced menu item),

(2) A demonstration of the ability of MHP/GOMS to model user activities (e.g.,
visual search of a history menu with a known organization, menu selection,
and associative memory retrieval) within a new and different task domain
(i.e., history tools), and

(3) Additional corroboration that the new and revised estimates of MHP opera-
tors (i.e., menu search and mouse selections) are able to model and predict
task performance times to within 80% of mean observed times.

Future Directions
There are four research directions in which to extend the work begun in this

dissertation: studies of other aspects of history for reuse, studies of other
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behavioural patterns motivating uses of history tools, studies of the cognitive and
design issues influencing history-based, user support tools, and enhancements to
cognitive modelling.

First, the dissertation examined the literal reuse of previous user interac-
tions. However, there is also the issue of partial reuse of previous user interac-
tions which needs to be examined. This includes how people reuse past interac-
tions, which elements in past interactions are most useful, and the mental and
physical effort associated with partial reuse of previous user interactions.

Second, behavioural studies are important for identifying and characterizing
behavioural patterns evident in user-computer interactions. As demonstrated in
this thesis, such behavioural studies provide important insights into the support
that users need in their interactions with the computer. Further research is
needed a) to identify and characterize behavioural patterns that influence other
uses of history tools like the ones identified in Chapter 2 (e.g., navigation, error
recovery), b) to examine the implications that each behavioural pattern has on the
design of history tools in a fashion similar to that described in Chapter 5 and in
Greenberg (1988b), and c) to study the impact that computing artifacts have on
locality (e.g., tasks which have more or less locality than other tasks) so as to shed
light on the design of artifacts.

Third, research is needed in the design of history tools. An important conclu-
sion from this dissertation is that current history tools are woefully inadequate in
regard to cognitive considerations influencing their use. Research is needed to
identify important cognitive issues influencing the use of history tools and to for-
mulate solutions to address these issues. A starting point for this research effort
is to extend the design issues and requirements enumerated in Chapter 3 and to
explore the design solutions outlined therein.

Finally, psychological model building allows designers to explore their design
intuitions, to explore and understand the mental and physical processes and con-
straints underlying the use of a design, and to predict the efficacy of design propo-
sals. Cognitive modelling shows promise not only in terms of providing a bridge
between psychological theories about human behaviour and design proposals for
supporting them but also in terms of influencing its own development as a
research tool. That is, by using the methodology to explore real design issues, we
can identify its limitations. Therefore, we can help drive efforts to broaden the
methodology’s scope, applicability, and usefulness.
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Appendix A

Selected Systems Supporting History
Tools
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Six systems were selected for assessment: ALOE, INTERLISP-D, MINIT, MPW,
ROOMS, and SEED. In order to provide a fair assessment of the state of current
support for all uses of history, only general-purpose development environments
were considered rather than special-purpose systems (e.g., text editors, informa-
tion retrieval systems). Such environments support computing activities by pro-
viding access to different applications (e.g., text editing, graphical drawing, elec-
tronic communication, programming, and managing file systems).
ALOE is an interactive structure-editor-based generator for programming environ-
ments [Linxi & Habermann, 1986]. ALOE, and the environments generated by
ALOE, support a history tool which records program development history. The his-
tory tool provides facilities that allow users to reuse command lines and recover
from errors. Command lines may be reused individually or as a group, facilitated
by a history macro facility. User errors may be corrected using an editor or using
an UNDO/REDO facility.
INTERLISP-D is a display-oriented programming environment supporting the LISP
programming language and a set of user facilities [Teitelman & Masinter, 1981;
Teitelman, 1977]. DWIM and PROGRAMMER’S ASSISTANT are two notable user facili-
ties that support history tools. In certain spelling error situations (e.g., function
name), DWIM’s spelling corrector scans related items the user recently worked
with (e.g., functions) to make corrections. PROGRAMMER’S ASSISTANT maintains a
history list containing user operations, a description of their side effects, and their
results. As well, several commands for manipulating a history list are provided:
REDO one or more operations, UNDO effects of specified operations, FIX operations
before re-executing them, and USE a substitution before re-executing the operation.
MINIT allows users to issue a single textual command line combining command
submission and window management operations [Barnes & Bovey, 1986]. It exists
on a multi-window, single-user, graphical workstation running the UNIX operating
system. As part of its support for command submission, MINIT maintains a his-
tory menu containing entered commands. The history tool allows users to reuse
previous commands with possible modifications.
MPW – MACINTOSH PROGRAMMER’S WORKBENCH – is the MACINTOSH development
environment [Farr, 1989]. The MPW environment provides an array of application
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creation tools along with a command language called MPW SHELL. MPW SHELL
combines the features of a command shell and a multi-window text editor with
mouse-based command capabilities. It supports operations typically found in most
UNIX command interpreters (e.g., file management and input and output redirec-
tion). Users may use the MPW ‘‘Worksheet’’ to execute and store often-used com-
mands; the current activity is noted at the bottom of the ‘‘Worksheet’’. Further-
more, users may re-execute commands in any window. For example, users may
re-execute commands embedded in source code windows, in program comments, in
program output, or in the ‘‘Worksheet’’. Commands are executed at the location
where they are invoked and outputs appear in the area following each command.
If commands are re-invoked, previous outputs are replaced with current outputs.
This manner of command execution makes it difficult to reconstruct the order in
which commands are executed because there is no semblance of a linear history.
ROOMS is an enhancement of INTERLISP-D that supports multiple virtual
workspaces. Each room represents a virtual workspace consisting of all programs
used to perform a single user task and no two rooms are displayed simultaneously.
In addition to the history capabilities available in INTERLISP-D, ROOMS provides
history capabilities for navigating around multiple workspaces. Users can deter-
mine where they are by examining the display. BACK DOOR allows users to go back
to the previous activity space and find out where they just came from.
SEED is a session editor implemented on top of the VAX/VMS environment [Holsti,
1989]. In addition to the traditional means of command execution (one command
at a time), SEED supports incremental script creation and script processing. A
transcript of all executed and unexecuted commands for a session, including user
mistakes, recovery actions, and command outputs, may be saved and restored
from session to session. A transcript’s contents may be copied and manipulated
before it is incrementally re-executed. Modifications to executed and unexecuted
commands are permitted. However, executed commands are automatically
undone if they are modified (i.e., the system backtracks to the state preceding the
modified command before it is re-executed). Therefore, the transcript provides a
linear record of the history.
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Appendix B

Locality Detection Algorithm
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As a program executes, it makes references to portions of a computer’s
memory in units known as segments. The sequence of memory references is a
memory reference string. The set of segments referenced during a program’s exe-
cution is the memory reference set.

Locality is the phenomenon in which a program’s memory references are lim-
ited to a small subset of segments for an extended time interval. The intuitive
notion of a locality has two components: a favoured subset of segments (i.e., a
locality set) and a definite reference interval (i.e., a phase) over which this
favoured subset remains unchanged.

A least recently used (LRU) stack may be used to construct sets of segments
which possess many of the characteristics associated with a locality. The LRU
stack can be represented as an ordered vector L (t) = (L1(t), L2(t), ..., Ln(t)) where
n is the size of the memory reference set and Li(t) is the segment identifier for the
ith most-recently-referenced segment at time t. If the stack is cut at any position
i, then the topmost i segments in the stack Si(t) = {L1(t), L2(t), ..., Li(t)} are the i
most recently referenced segments at time t. Since the LRU stack can be cut at
any point, it defines a hierarchy of localities (i.e., i = 1,2,3, ...,n).

However, the problem with using the LRU stack is that, at each point in
time, the number of locality sets is equal to the number of segments in the
memory reference set (i.e., n). The reason is that the LRU stack does not contain
enough information to allow the selection of certain locality sets as being more
‘‘distinctive’’ than others. In order to do this, we need information about the for-
mation time (i.e., Fi(t)) and termination time (i.e., Ti(t)) of a set of segments Si(t).
Also, we need to maintain the most recent time unit Ri(t) where a reference was
made to the ith stack position (i.e., last time where a reference was made to the
least recently referenced member of the set of segments).

The formation time of a new set of segments of size i is the termination time
of the previous set of segments of size i. Thus, a set of segments of size i at time t,
Si(t), remains intact until a reference is made to a stack position greater than i. It
is considered distinctive (i.e., a locality set) if and only if every member of the set
has been re-referenced since the set was formed. Specifically, a locality set at time
t, LSi(t), is any Si(t) for which Ri(t) > Fi(t).

In order to detect such locality sets, an extended LRU stack is needed
[Madison & Batson, 1976]. It consists of the LRU stack and two ordered vectors:
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F (t) = (F1(t),F2(t),...,Fn(t))
R (t) = (R1(t),R2(t),...,Rn(t))

There are two parts to the locality detection algorithm. In the first part, an active
locality set LSi(f ) is terminated at time t = e when f ≠ Fi(e). We must check for
termination because for a given size i, the termination of a locality set is brought
on by the activation of a new set of segments for the same size i. In the second
part, a new locality set is formed at time t ≠ f when Ri(f ) >Fi(f ) (i.e., at time Ri(f )
when the least recently referenced segment is re-referenced after the locality set is
formed at time Fi(f )).

The following is an outline of the locality detection algorithm developed from
Madison and Batson (1976).

Assumption: Each reference constitutes one time unit

Given:
g a two dimensional array LRU for the LRU stack

(i.e., LRU[i,t] holds the ith stack element at time t)
g a two dimensional array F for the formation time

(i.e., F[i,t] is the formation time of a Si(t) at time t)
g a two dimensional array R

(i.e., R[i,t] is the most recent reference to ith reference at time t)
g variable n is the length of the current reference set
g variable reference is the current reference
g an array Active numbered from 1 to n, holds a boolean indicating

whether Si is an active locality set
g an array FormTime, numbered from 1 to n, holds the formation

time of LSi
g a two dimensional array Sets holds the references in

the current active locality set
(i.e., Sets[size, i] holds the ith member of locality set of size

g whereInLRU(argument) is a function returning position of the
argument in LRU at time t-1

/* process each reference and see if it is part of a locality set */
t = 1
while (true) {

reference = readReference()

if (reference = null)
exit()

lastOccur = whereInLRU(reference)

if (lastOccur <= n) {
/* the reference appeared previously in LRU[lastOccur, t-1] */
LRU[1, t] = LRU[lastOccur, t-1]
R[1, t] = t
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F[lastOccur, t] = F[lastOccur, t-1]

for (j=1 to lastOccur-1) {
LRU[j+1, t] = LRU[j, t-1]
R[j+1, t] = R[j, t-1]
F[j, t] = t

}
for (k=lastOccur+1 to n) {

LRU[k, t] = LRU[k, t-1]
R[k, t] = R[k, t-1]
F[k, t] = F[k, t-1]

}
}
else {

/* the reference is a new reference */
LRU[1, t] = reference
R[1, t] = t
F[1, t] = t
if (t > 1)

for (j=1 to n) {
LRU[j+1, t] = LRU[j, t-1]
R[j+1, t] = R[j, t-1]
F[j+1, t] = t

}
n = n + 1
Active[n] = 0

}

if (t > 1)
for (i=1 to n) {

/* Part 1: Look for terminated locality sets */
if (Active[i] = 1 && FormTime[i] ≠ F[i,t]) {

/* LSi(t −1) = {LRU [1,t −1],...,LRU [i,t −1]}
/* print LSi(t −1), formation and termination times */
print FormTime[i], t-1
for(m = 1 to i)

print Sets[i, m]
Active[i] = 0

}

/* Part 2: Look for new locality sets */
if (R[i,t] > F[i,t] && Active[i] = 0) {

Active[i] = 1

for (j=1; j<=i; j++)
Sets[i, j] = LRU[j, t]

FormTime[i] = F[i, t]
}
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}
t = t + 1

}

for (i=1 to n)
if (Active[i] = 1) {

/* LSi(t −1) = {LRU [1,t −1],...,LRU [i,t −1]} */
/* print LSi(t −1), formation and termination times */
print form[s], t-1

for(m = 1 to i)
print Sets[i, m]

}
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Appendix C

Cognitive Modelling Framework
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The cognitive modelling analysis framework used in this thesis consists of the
Model Human Processor (MHP for short) and a representation and methodology,
known as GOMS, for describing a user’s task.

Model Human Processor
Model Human Processor is a general characterization of human information

processing (Figure 1); it includes a system architecture and a set of quantitative
parameters of component human performance. The system architecture is made
up of three interacting subsystems – perceptual, cognitive, and motor – together
with a set of ten principles of operation1 derived from psychological evidence and a
human information-processing model of psychological behaviour. Each subsystem
has its own memories and processors. The principles of operation describe a wide
range of operations and control of these memories and processors.

Each processor operates serially but concurrently with other processors, sub-
ject to limitations imposed by data flow requirements. The perceptual processor
receives information from the outside world and deposits it into the appropriate
sensory memory – visual image store or auditory image store – where it is held
until it is symbolically encoded. Working memory receives encoded information
which is then used by the cognitive processor, along with previously stored infor-
mation from long-term memory, to make decisions about what to do. The cognitive
processor deposits information into working memory which, in turn, initiates the
associated motor processor actions that act on the outside world.

There are quantitative parameters associated with each subsystem com-
ponent A memory component has three parameters: storage capacity µ, decay time
of an item in the memory δ, and main code type (physical, acoustic, visual, or
semantic) κ. A processor component has a cycle time τ parameter – time to process
one unit of information. In the original model, a parameter value may be
expressed in terms of a typical value or as a lower and upper bound (i.e., range).
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1
Rationality Principle: People attain their goals in a rational manner, given a task

structure and inputs, bounded by limitations on their knowledge and processing ability.
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Figure 1: The Model Human Processor – memories and processors [Card,
Moran, & Newell, 1983, (pp. 26)]. Sensory information flows into Working
Memory through the Perceptual Processor. Working Memory consists of
activated chunks in Long-Term Memory. The basic principle of operation
of the Model Human Processor is the Recognize-Act Cycle of the Cognitive
Process. The Motor Processor is set in motion through activation of
chunks in Working Memory.
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Elemental acts of the processors are known as operators. A task analysis in
this framework involves subdividing a task into the gross functions performed by
each processor and decomposing these functions into sequences of operators.
Approximate engineering-style calculations of the times to carry out gross-level
human behaviours are determined from task descriptions [Card, Moran, &
Newell, 1983]. MHP assumes that operators are independent of the task environ-
ment so that they can be combined to perform many different tasks. It also
assumes that operators act independently of each other so that the time to perform
a sequence of operators is the sum of the times to perform each operator. Example
1 illustrates a sample task from Card, Moran, and Newell (1983) which shows how
a task is modelled and a calculation is made.

GOMS
GOMS is a representation and methodology for describing what a user needs

to know in order to perform computer tasks (i.e., a user’s cognitive structure).
User knowledge is represented in terms of four cognitive components of skilled
task performance:
(1) Goals are defined in terms of user tasks to be performed.
(2) Operators are elementary acts of the three processors which result in changes

to a user’s mental state or to an external state (e.g., pressing a key).
(3) Methods, associated with goals, are procedures for accomplishing a task and

are encoded in terms of the operators.
(4) Selection rules are used to choose amongst a number of methods for achieving

a particular goal.
A family of engineering-style cognitive models, based on MHP and formulated at
different levels of GOMS analysis, has been developed for a number of complex
HCI task domains. The Keystroke-Level and Unit-Task Level Models are two
such models formulated at the keystroke and unit-task level, respectively [Card,
Moran, & Newell, 1983]. Each model predicts the amount of time required by a
user to do representative tasks in the modelled task domain.

The Keystroke-Level Model is based on a simplified GOMS analysis which
does not require an explicit analysis of goals and selection rules. It is used in
situations where it is possible to specify a user’s interaction sequence in detail.
However, it has two additional restrictions: a task method be given in order for
time predictions to be made and predictions apply only to the execution time of a
task. This model has been empirically validated and tested for 14 tasks (i.e., 4
editing, 5 graphics, and 5 command executive), 11 different systems (i.e., 3 editors,
3 graphics systems, and 5 command executive subsystems), and 28 users [Card,
Moran, & Newell, 1980].

Critical Elements of a Cognitive Model
In order for designers to use such cognitive models, there are a number of

critical elements they must possess: calculation, approximation, zero-parameter
prediction, learnability and usability by computer designers, and coverage of the



122 Appendix C: Cognitive Modelling Frameworkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Example 1: A simple reaction-time analysis using the Model Human
Processor [Card, Moran, & Newell, 1983, (pp. 66-69)]. A user sits before a
computer display. Whenever any symbol appears, the user responds by
pressing the space bar. What is the time between signal and response?

Figure 2: A reaction time analysis using the Model Human Processor.

Solution: Figure 2 illustrates the course of processing through the Model
Human Processor. The user is in some state of attention to the display
(Figure 2a). When some physical depiction of the letter A – denoted by α –
appears, it is processed by the Perceptual Processor, giving rise to a
physically-coded representation of the symbol – written as α’ – in the
Visual Image Store and very shortly thereafter to a visually coded symbol
– written as α’’ – in the Working Memory (see Figure 2b). This process
requires one Perceptual Processor cycle τP. The occurrence of the stimulus
is connected with a response (Figure 2c), requiring one Cognitive Processor
cycle, τC. The motor system then carries out the actual physical movement
to push the the key (Figure 2d), requiring one Motor Processor cycle, τM.
Hence, the total time required between signal and response is τP+τC+τM.
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total task [Card, Moran, & Newell, 1983; John, 1988]. Calculation supports pred-
ictions based on explicit mathematical models of user behaviour with the task as
opposed to judgements, designer’s experiences, or evaluations. Approximation is
the recognition that the processes involved in user behaviour are extremely com-
plex and that real-world calculations for engineering purposes need only include
sufficient detail to do the design job. Zero-parameter prediction stipulates that
parameters of the engineering models used to make predictions be determined
during construction of the model and prior to its application to a new situation.
The basic psychology must be built into the model so that the model can be taught
to and be usable by computer-system designers who are not trained psychologists
or human factors experts. Finally, an engineering model of a specific task domain
must provide coverage for the total task by accounting for all first-order effects
observed in the task domain.

Shortcomings of Engineering Models
In the initial effort demonstrating how the proposal would be realized, a

number of simplifying assumptions were adopted. Some of these assumptions
represent shortcomings of current engineering models which are enumerated
herein [Card, Moran, & Newell, 1983; Olson & Olson, 1990]:
g The initial model accounts for skilled and error-free user behaviour but it does

not consider unskilled user behaviour and the effects of errors, learning and
casual usage on user performance.

g The initial model focuses on the usability of a system and does not address the
functionality of a system (i.e., what computer tools are needed).

g The initial model uses a mental operator to represent all cognitive processes
instead of a differentiated treatment of such cognitive processes which take dif-
ferent amounts of time.

g The initial model assumes that the human information processing components
operate in a serial fashion and provides no account of the parallel processes
involved in user behaviour.

g The initial model does not address the issue of how much information is held in
memory when a computer system is used (i.e., mental workload), of individual
differences amongst users, of user fatigue, and of the social and organizational
considerations associated with computer-supported work.

g The model does not provide guidance in predicting the usefulness, user satisfac-
tion, and user acceptability of a system.

Recent cognitive modelling efforts are attempting to address a number of these
shortcomings (see Olson and Olson (1990) for a review of research in this area) but
the work is still very much in its infancy.

Extensions to MHP and GOMS
A number of researchers have extended Card, Moran, and Newell (1983)’s

work along two fronts. First, they have confirmed the basic set of parameters of
the processors in MHP and extended the number of parameters to include the time
to perform component activities for a number of new HCI task domains [Olson &
Olson, 1990]. Second, John (1988) has developed two additional GOMS models by
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extending MHP and GOMS analysis to include two new HCI task domains:
stimulus-response compatibility and transcription typing.

Both of these developments have direct implications for the studies in
Chapter 6 and Appendix D. MHP’s parameters have been extended to include
task activities that are particularly relevant to those that underlie the task of
using a history tool. In particular, John, Rosenbloom, and Newell (1985) and John
(1988) extended MHP to include a class of user behaviour involving operators that
are at a lower level than any operators found in previous GOMS models. Further-
more, John (1988)’s work demonstrated how to describe such user behaviours
using an algorithmic GOMS formulation. This formulation is adopted as the
representation for task descriptions used in this thesis. The following section is a
brief presentation of the algorithmic GOMS formulation used in John (1988).

GOMS Model of Immediate Behaviour
Stimulus-response compatibility (SRC for short) is a robust psychological

phenomenon where the degree of difficulty of a response is dependent on the com-
plexity of the relationship between the set of stimuli and their corresponding
responses [John, 1988]. It was selected as the domain within a class of user
behaviour, known as immediate behaviour, in which to expand GOMS. Immediate
behaviour is the direct mapping of a stimulus into a response without problem-
solving or planning [John, 1988]. Such behaviours are examples of routine cogni-
tive skill and are generally associated with reaction time tasks where the response
to a stimulus is well known and initiated immediately upon presentation of the
stimulus, without deliberation about what response is appropriate.

ARTLESS: An Algorithmic Response-Time Language
Rosenbloom suggested that people perform SRC-related tasks by executing

algorithmic programs and proposed an informal, algorithmic response-time
language, ARTLESS, for describing the performance of such tasks [John, 1988].
This language was used by John (1988) to describe SRC and transcription typing
tasks. A longer description of the language appears in John (1988).

The features of the language are:
(1) Tasks are accomplished with a sequence of MHP processor operations.
(2) Each operation has an identifiable duration that is only dependent on the pro-

cessor performing the operation.
(3) Tests in conditionals must be exhaustive and explicit because there is no IF-

THEN-ELSE construct (i.e., two ARTLESS IF-THEN statements are used instead –
testing for the conditional and its negation).

(4) Tests to exit a loop take time only when they succeed.
(5) Reasonable algorithms are purely functional (i.e., there are no null operations

or empty loops).
In subsequent descriptions of ARTLESS, an example task description using

ARTLESS (Example 2), drawn from our history effort analysis, is used to illustrate
the language’s constructs. ARTLESS has seven constructs: constants, variables,
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Example 2: In the csh history tool, a previous command line containing
an argument is reused by the history command !?argument. As a
simplification, we will assume that the history tool looks for the most
recent occurrence of the command line in the history containing the given
argument. Furthermore, let us assume that the average length of a typical
UNIX command argument is n

hh
A characters long. Therefore, an ARTLESS

description of the cognitive and motor processes involved in issuing the
history command !?argument is as follows:

L1 CM Get-!? (<!?>)
L2 CE Initiate (<!>)
L3 MK Key (<!>)
L4 CE Initiate (<?>)
L5 MK Key (<?>)
L6 CM Get-One-Argument ("Argument")
L7 Count ← 1
L8 REPEAT BEGIN
L9 CE Initiate (Argument[Count])
L10 MK Key (Argument[Count])
L11 Count ← Count + 1
L12 UNTIL Is-Equal? (Count, n

hh
A)

L13 CE IF-SUCCEEDED Is-Equal? (Count, n
hh

A) THEN BEGIN
L14 CE Initiate ()
L15 MK Key ()
L16 END

assignments, blocks, operators, branches, and loops. Constants, variables and
assignments are like typical programming language constructs (e.g., 1, Count,
Count ← Count + 1). Blocks – beginning with the keyword BEGIN and ending with
the keyword END – delineate sequences of operations (see lines L13 - L16).

Operators are parameterized black boxes that do the real work in the system
(e.g., Get-!? (<!?>) retrieves the method for the !?argument task). Lines L1-L6,
L9-L10, and L12-L15 contain operators. Predicates are a subclass of operators
that don’t return a value but are used to test for the truth of some condition (e.g.,
Is-Equal? (Count, n

hh
A) test for the truth of equality of the two arguments – Count

and n
hh

A). Lines L12 and L13 contain predicates. Algorithms are specified without
the need to detail how the concept "Argument" is represented.

Branches permit the testing of a predicate and the subsequent execution of
an operator or a block of operators when the predicate is true. Lines L14 and L15
are executed only if the variable Count and the constant n

hh
A are equal (see L13).

Since, an ELSE clause is not explicitly supported, a branch requiring such a clause
may be obtained by an explicit test for the complement of the IF clause.

Finally, a loop executes an operator, or block of operators, until some predi-
cate becomes true (see Lines L8 - L12). There must be an explicit test for the
predicate at the end of the loop – line L12 is the explicit test for the REPEAT loop in
line L8 while the predicate test in L13 is provided for readability.
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Cost Scheme for an ARTLESS Algorithm
A simple scheme is used to assess the cost of an algorithm.

(1) Except for operators, all constructs in ARTLESS are free of charge. In Example
2, lines L7, L8, L11, L12, and L16 are free because they do not involve the
operator construct.

(2) Each operator takes one unit of time associated with the processor that per-
forms the operation. The operator times are expected to relate to the respec-
tive processor cycle times for the MHP. Therefore, lines L2, L4, L9, L13, and
L14 involve the cognitive processor (note the CE adjacent to the lines), while
lines L3, L5, L10, and L15 involve the motor processor (note the MK adjacent
to the lines). Both lines L1 and L6 involve operations that are not elemental
operations of the cognitive processor and are each assigned a composite cost of
CM. Line L1 requires a retrieval of the history command (i.e., !?) from Long
Term Memory while line L6 selects one of the arguments in the desired com-
mand line as the pattern to the history command.

(3) The REPEAT loop is a special case for counting operators. All operators within
the loop count as they are executed. The predicate in the UNTIL line of the
loop does not count, but the predicate outside the loop – which retests the ter-
mination of the loop – does count. This is why line L12 has no cost assigned
to it but the predicate test in L13 does, to represent a one time cost for the
REPEAT loop in lines L8 - L12.
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Appendix D

Visual Search of a History Menu

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

This appendix presents an experiment to estimate a MHP operator required
for our analysis of the user effort required to issue a recurrent user operation (see
Chapter 6). The reason for the estimation experiment is that the MHP/GOMS
framework does not model visual search of a menu and is therefore unable to
predict user behaviour involving this task. Furthermore, this information is not
available in a form which can be incorporated into the framework. The reason is
that there are conflicting theories about the visual search strategy that people use.

Estimation of Visual Search Operator for a History Menu
Studies in cognitive psychology have shown that when a sequence of

alphanumeric characters is displayed in the foveal (eye focus) region of the eye
(eliminating the need for eye movement), an exhaustive search strategy is used
(i.e., each element is examined). On the other hand, when a large visual list is
involved, necessitating eye movements, a self-terminating search strategy is
observed (i.e., search terminates ones the search item is found) [Chase, 1986].
Typically, a menu is sufficiently large to necessitate eye movements so that a self-
terminating search strategy would be in effect.

On the other hand, studies of menu search within HCI using real-world
stimuli have suggested that knowledge (e.g., menu organization and experience)
plays a role in directing and limiting search of menus [Lee & Raymond, to appear;
Mehlenbacher, Duffy, & Palmer, 1989]. Specifically, users can narrow the search
space to a smaller area using knowledge about the menu. As a result, menu
parameters such as organization, frequency of reference, match criteria (e.g.,
literal, categorical, partial) could play a role in narrowing the search space and
influence the visual search strategy used [Giroux & Belleau, 1986; Paap & Roske-
Hofstrand, 1988].

Current menu search studies have suggested two candidate models: a sys-
tematic self-terminating search and a random search [Card, 1984; MacGregor &
Lee, 1987a]. In a systematic self-terminating search, users use some strategy
(e.g., top down) to keep from examining an item that has been previously exam-
ined and users terminate the search process as soon as the examined item
matches the search item (i.e., target item). This search strategy is based on
empirical studies of search times for categorical information (i.e., search that
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involves matching a target with its appropriate category). In contrast, items are
examined randomly in a random search, some having been examined previously,
until the target item is located. This search strategy is based on empirical studies
of search times and eye movement data for visual search of command menus
organized in one of three ways: function, alphabetic, and random. There is
currently some controversy as to whether the current data differentiate between
the two models [Card, 1984; MacGregor & Lee, 1987b]. Aside from differences in
strategies, the two models would also predict different search times.

Given the lack of a unified visual search theory as well as a lack of a clearcut
visual search strategy for our situation, we ran an experiment to determine the
strategy for our history-menu search task. There were two objectives for this
experiment. The first objective was to determine the strategy used in a visual
search of a history menu. The second objective was to estimate the time to per-
form this task for the menu search operator.

Method
Our experiment is modelled closely after Neisser (1964)’s visual search para-

digm. It is two independent experiment conducted together. Each experiment is a
two-factor within-subjects design measuring visual search performance with a his-
tory menu. However, menu references exhibited locality in the first experiment
and non-locality in the second experiment. Search items were always present on
the menu in the locality experiment and were either present or absent on the
menu in the nonlocality experiment.

Serial position is a factor which designates where a search item appears in
the menu. Serial position 1 is the top item in the menu and serial position 8 is the
bottom item in the menu. Scenario is a factor which emulates either the locality
or non-locality menu reference behaviour using different constraints and probabil-
ity distributions. The probability distributions represent the likelihood of finding
a search item at each menu position. Two different scenarios are considered in
each experiment.

Subjects
16 paid volunteers, consisting of students and staff at the University of

Toronto, participated in the experiment. All subjects had knowledge and experi-
ence with UNIX. Subjects served in both experiments in one session. This is a
deliberate attempt to mirror a typical user session in which their interactions
exhibit both locality and non-locality behaviours (see Chapter 5).

In each half of the session, subjects performed one of the scenario conditions
from each of the two experiments. No two scenario conditions from the same
experiment were administered in the same half of the session. Given this restric-
tion, there were 16 possible combinations for the administration of the scenario
conditions. The administration of the scenario conditions were counterbalanced to
eliminate possible biases resulting from sequencing effects by randomly assigning
a subject to one of the 16 possible combinations.
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Materials and Apparatus
A list of 12 items was used with the 8 most recently referenced items being

visible on the menu (i.e., the top eight items in the list are visible while the bottom
four items in the list are never displayed). The term menu is used to refer to the
visible portions of the list. The most recently referenced item appears at the top of
the menu and the 8th most recently referenced item appears at the bottom of the
menu.

The stimuli are UNIX command lines. Table 1 lists the menu items used for
each scenario factor in the two experiments. All the items are of the same length
because our primary objective is to study how locality and non-locality effects
influence visual search in the absence of other influencing factors.

The experiment machine is a SUN 3/50 workstation consisting of a high-
resolution graphic display and keyboard. A simple window manager MGR from
Bellcore is used. The SUN display is divided into three windows (see right screen
panel of Figure 1). The top window contains instructions to the subjects. The bot-
tom window displays an error message whenever the subject makes a mistake
(e.g., selecting an inappropriate key on the keyboard). The middle window is the
primary interaction window where a list item, the menu, or a search item is
presented and subject responses are made.

Scenarios in Locality and Non-Locality Experiment
In the locality experiment, two scenarios were examined: small locality set

and large locality set. Search items in the small locality set scenario appear pri-
marily in the top 4 menu positions, leading to locality set sizes of 1 to 4. On the
other hand, search items in the large locality set scenario appear in all 8 menu

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
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Locality Set Locality Set Non-Locality Non-Localityiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
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webster albeit jove ˜/search.c file mail/db/a* head dumplog
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Table 1: The menu items used in the locality and non-locality experiment.



130 Appendix D: Visual Search of a History Menuhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Beginning phase 1
Press the Carriage Return key to proceed

Read and remember this next command line on menu

compress demos*

Figure 1: The two screen panels for the priming stage. The left screen
panel marks the beginning of the priming stage. The right screen panel is
representative of the screen panel when the list items are individually
displayed for 3.5 seconds for the user to remember.

positions with diminishing probability, leading to locality set sizes 1 to 8. Table 2a
lists the probability of finding a search item in each of the 8 serial positions for the
two scenarios in this experiment.

In the non-locality experiment, two scenarios were examined: mild non-
locality and strong non-locality. In the mild non-locality case, search items are
absent 25% of the time and in the strong non-locality case, search items are absent
50% of the time. Serial position 0 represents an absent search item. The least
recently referenced item is used as the search item in a trial requiring an absent
search item. When the search item is present on the menu, the probability of
finding it at serial position 2 to 8 is .28, .20, .16, .12, .10, .08, .06. However, since
the percentage of the trials where the search item is present is different in the two
scenarios, the effective probability of observing a search item is .75 and .50,
respectively. Table 2b lists the effective probability of observing a search item in
each of the serial positions of the menu. To ensure that no locality set biases occur
in this experiment (i.e., no repeated reference to a set of the menu items), the pro-
bability of referencing a search item in position 1 is 0. As a result, there are 8
serial positions: positions 2 through 8 in the menu when the search item is present
and position 0 when the search item is absent.

The probability distributions used in the scenario conditions were chosen to
produce the desired locality and non-locality effects, subject to the constraint that
there were sufficient test trials for each serial position.

Procedure
A session consists of a practice block of test trials and 4 blocks of test trials.

Each block of trials begins with a priming stage (see left screen panel in Figure 1).
Each of the 12 list items is presented individually for at least 3.5 seconds in the
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Probability of Target at Serial PositionLocality 1 2 3 4 5 6 7 8iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Small Locality Sets .26 .24 .22 .20 .02 .02 .02 .02
Large Locality Sets .18 .17 .15 .14 .12 .10 .08 .06iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c

Table 2a: The probability of locating the target in serial positions 1
through 8 for the two scenarios in the locality experiment.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Probability of Target at Serial PositionNon-Locality 0 2 3 4 5 6 7 8iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Mild Non-Locality .25 .21 .15 .12 .09 .075 .06 .045
Strong Non-Locality .50 .14 .10 .08 .06 .05 .04 .03iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
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Table 2b: The probability of locating a search item in serial positions 0
and 2 to 8 for the two scenarios in the non-locality experiment. Serial
position 0 represents the situation in which a search item does not appear
on the menu.

reverse order of their initial position in the list, least recent first and most recent
last (see right screen panel in Figure 1).

The priming stage is followed by a searching stage which consists of 100
timed trials (see top left and bottom right screen in Figure 2). On each trial, the
search item is presented and is followed 2.5 seconds later by the presentation of
the menu (see the top right and bottom left screen panels in Figure 2). If the
search item appears in the menu, subjects are instructed to respond by hitting
either the ‘f’ or ‘j’ key on the keyboard; whichever delimits the search item in the
menu. This simple response scheme is used because it is crucial that the time to
locate the item be accurately measured. In each trial, ‘f’ or ‘j’ is randomly assigned
to each item of the menu, with equal probability. If the item is not located, sub-
jects are instructed to respond by hitting the space bar on the keyboard. The time
between the presentation of the menu and the subject’s response is recorded and
any errors that occur in the trial are noted.

Results and Discussion
The following sections describe the results and analyses of each of the two

measured scores: number of errors and search times. These results are analyzed,
for each experiment, using a two-factor, within-subjects ANOVA test.

Number of Errors
On average, less than 2.5 errors were committed in the 100 timed trials for

each scenario condition, collapsed over all serial positions. The mean and stan-
dard error of this measure for each of the scenario conditions appear in Table 3.
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Beginning phase 2:  Please position your hands
Press the Carriage Return key to proceed

Read and remember this target command line

vi mbox oldmbox

End of a Block of Trials
. . . Please Wait

Locate the item in this menu
Press the appropriate f/j/spacebar key

compress demos*

uncompress pics

rcp db:mbox tmp

grep talks mbox

vi mbox oldmbox

tar -f mail new

chmod o-rwx tmp

rm mail/db/jan*

f f

j j

j j

f f

j j

f f

j j

f f

Figure 2: The four panels associated with the searching stage. The top
left panel and the bottom right panel mark the beginning and end of the
searching stage. The top right panel is representative of the screen panel
in which the search item to be searched for is presented for 2.5 seconds.
The bottom left panel is representative of the screen panel in which the
subject is to locate the search item in the displayed menu. If the subject
locates the search item in the menu, the key for the letter delimiting the
search menu item is pressed, otherwise, the space bar key is pressed.

There is no significant difference in the number of errors between the two levels of
the scenario factor in either experiment (i.e., F (1,15) = 1.98 p = 0.18 for the local-
ity experiment and F (1,15) = 0.65 p = 0.43 for the non-locality experiment).

In the locality experiment, the number of errors is significantly different for
different serial positions, F (7,105) = 4.00, p < .001. This result is erroneous and
can be attributed to unequal sample sizes in the different conditions (i.e., fewer
trials in serial positions 5 through 8 for the small locality set scenario compared to
the large locality set scenario). A better estimate of search times in serial posi-
tions 5 through 8 is obtained for the small locality set scenario compared to the
large locality set scenario.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Locality Non-Locality

Mean ± Std. Err. (N) Mean ± Std. Err. (N)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Small Large Mild Strong

Locality Sets Locality Sets Non-Locality Non-Localityiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
2.4 ± 0.4 (16) 1.7 ± 0.4 (16) 2.4 ± 0.4 (16) 1.9 ± 0.5 (16)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c

c
c
c
c
c
c
c

c
c
c
c

Table 3: The mean and standard error of the number of errors observed
for the 16 subjects in each of the scenario factors in the two experiments.

Search Times
For cognitive modelling purposes, it is sufficient to examine the average

visual search performance profile (i.e., to examine average subject performance
times). In the same spirit as other cognitive modelling research based on MHP, an
approximation of the search strategy and the quantitative relationship between
search times and serial position are determined. Therefore, the focus is on the
mean search times. This is based on the mean search times of each subject at
each serial position in each of the scenario conditions.

Figures 3 and 4 plot, for the locality and non-locality experiment, the mean
search times as a function of the 8 serial positions for each of the two scenario con-
ditions in each experiment. As suggested by the respective plots, the main effect
of serial position on search time is highly significant in both the locality
(F (7,105) = 60.6, p < .0001) and the non-locality experiments (F (7,105) = 47.9,
p < .0001). This suggests that a relationship exists between search time and
serial position of search items. In order to determine the exact nature of this rela-
tionship, a one-factor within-subjects trend analysis was performed on each
scenario condition in each experiment.

In the locality experiment case, there is a significant linear relationship in
the small locality set scenario (F (1,105) = 134.9, p < .0001) and in the large local-
ity set scenario (F (1,105) = 448.2, p < .0001). However, there is also a significant
quadratic relationship in the large locality set scenario (F (1,105) = 14.0, p < .01).
A closer examination of the plot suggests that this may be caused by the low
search time for serial position 1. This low search time for serial position 1 sug-
gests that a subject’s skill in recognizing the same search items which appear in
back-to-back trials is more advanced than their skill in recognizing the same
search items which are separated by more than one trial. Thus, subjects may just
proceed to make an immediate response without the need to examine the menu
items. To confirm this conjecture, a trend analysis was performed again on the
data but ignoring the search times for serial position 1. The test reveals a
significant linear relationship for each scenario condition (both in the small local-
ity set scenario, F (1,90) = 66.7, p < .0001 and in the large locality set scenario,
F (1,90) = 216.8, p < .0001) and the lack of a significant quadratic relationship in
either scenario. We therefore, treat serial position 1 in both scenarios as special
cases. This special treatment of serial position 1 is applied to both scenarios in
order to ensure equal treatment.

A trend analysis was also performed on each scenario of the non-locality
experiment for search times in serial positions 2 through 8. Serial position 0 is
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Figure 3: Locality: A plot of the mean search times (based on the mean
search times of the individual subjects) as a function of serial position
along with the fitted line. Note: the data for serial position 1 was not
included in the data used to derive the fitted line because a strong practice
effect in this serial position produced a depressed reaction time.

Serial Position

M
ea

n 
S

ea
rc

h 
T

im
e 

(s
ec

on
ds

)

0 2 4 6 8

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

Mild Non-Locality
Strong Non-Locality

Figure 4: Non-Locality: A plot of the mean search times (based on the
mean search times of the individual subjects) as a function of serial
position along with the fitted line.
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treated as a special case and is not included in the trend analysis because a
subject’s response in this case is different from the case when the search item
appears on the menu. In fact, the response scheme in the latter case is simpler
and requires less time than the former case. This is confirmed in an examination
of search times for this serial position when compared to search times at the other
serial positions. For both scenarios, there is only a significant linear relationship
between search times and serial position (in the mild non-locality scenario,
F (1,90) = 200.1, p < .0001 and in the strong non-locality scenario, F (1,90) = 187.3,
p < .0001).

Table 4 lists the mean search times for the special cases in each of the two
experiments. Based on the results of the trend analysis, we performed a least
squares linear regression on the search times against serial positions 2 through 8
for each scenario condition in the two experiment (see Figures 3 and 4). From the
regression, the slope and the intercept for each fitted line as well as the coefficient
of determination1, r2, is determined (see Table 5).

There are four fitted lines, one for each scenario condition.

Task Performance Time = Search Rate * l + Aggregate Time Eqn. (1)

The slope of the fitted line is the incremental time needed to search each addi-
tional menu item (i.e., Search Rate). The intercept is the Aggregate Times of the
processes that occur in every test trial (e.g., start and stop times of visual scan,
decision time, response time). As shown in Table 5, search rates remain relatively
unchanged across the two scenario conditions in each experiment. Furthermore,
search rates between the two experiments are nearly identical (.11 secs./item in
the locality experiment and .12 secs./item in the non-locality experiment). The
main differences are attributed to intercept values. This means that each scenario
condition involves cognitive operations of different durations (see Table 5).

The results of this experiment indicate that the time to search a history menu
is approximated by a linear function that varies directly with the number of items
to search (i.e., the menu search is serial). The search rate for both the locality and
non-locality experiments are nearly identical with aggregate times that are
slightly different for the different scenario conditions. The history lists in our
experiment are typical history lists. Therefore, the results are generalizable to
user histories whose references exhibit locality and non-locality effects.

Time Parameter for the Pure Menu Search Operator
Eqn. (1) includes a menu search component and a response component. This

response component appears in the intercept – Aggregate Time – because the
response task is one of the subtasks that is performed in every test trial. Because
the analyses in Chapter 6 consider task proposals which use different response
methods, the response time in the menu search task is separated out from the task
performance time to yield a pure menu search time.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
1

r 2 represents the proportion of the sum of squares of deviations of the y-values about
their mean that can be attributed to a linear relationship between y and x.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Serial Search Times (secs.)Experiment Scenario Position Mean ± Std. Err.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Small Locality Set 1 1.06 ± .06Locality Large Locality Set 1 .99 ± .04iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Mild Non-Locality 0 1.99 ± .13Non-Locality Strong Non-Locality 0 2.00 ± .12iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Table 4: The mean search times, along with the standard error, for the
special cases of the locality and non-locality experiment.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Search Rates Aggregate Times
(secs/position) (seconds)Experiment Scenario

Slope ± Std. Err. Intercept ± Std. Err. r2

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Small

Locality Set .11 ± .02 1.09 ± .10 .87
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Large
Locality

Locality Set .11 ± .01 1.12 ± .03 .99
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Mild
Non-Locality .12 ± .01 1.18 ± .03 .99

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Strong

Non-Locality

Non-Locality .12 ± .01 1.07 ± .04 .98
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 5: The slope and intercept of a weighted regression fit on the data
shown in Figures 3 and 4 for each scenario factor. The slope is the search
rate and the intercept is the aggregate duration of the processes that occur
regardless of serial position.

Figure 5 contains a ARTLESS description of the menu search task. This
description yields another form of Eqn. (1) for the time to perform this task:

Task Performance Time = PS0
+ lPS1

+ pf(PI + 3.5CE + MB) + (1 - pf)(3CE + MB)

where pf is the probability of the search item being on the menu while (1 - pf) is
the probability of the search item not being on the menu. In the two scenario con-
ditions of the locality experiment pf is 1. In the non-locality experiment, pf is .75
for the mild non-locality condition and pf is .5 for the strong non-locality condition.
These pf values are not in one-to-one correspondence to those observed in Chapter
5. The reason is that, unlike a real user session, a laboratory experiment is a
small scale simulation of a user session. As a result, we had to amplify the values
for pf in order to reproduce, in a laboratory experiment, the locality and non-
locality effects observed in our behavioural studies (i.e., small and large locality
set effects and mild and strong non-locality effects).

PS(l) is the time associated with the non-response activities. PS0
is the

Aggregate Time − Response Time and PS1
is the Search Rate.

PS(l) = PS0
+ lPS1
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L1 PS(l) Match_Result ← Search (Target)
L2 CE IF-SUCCEEDED Found? (Match_Result) THEN BEGIN
L3 PI Letter ← Perceive-Letter (<LETTER>)
L4 CE IF-SUCCEEDED Is_F? (Letter) THEN BEGIN
L5 CE Initiate (<LETTER>)
L6 MB Key (<LETTER>)
L7 END
L8 CE ELSE IF-SUCCEEDED Is_J? (Letter) THEN BEGIN
L9 CE Initiate (<LETTER>)
L10 MB Key (<LETTER>)
L12 END
L13 END
L14 CE ELSE IF-SUCCEEDED Not_Found? (Item) THEN BEGIN
L15 CE Initiate (<SPACE>)
L16 MB Key (<SPACE>)
L17 END

Total Cost = PS(l) + pf((CE + PI + .5(2CE + MB) + .5(3CE + MB))
+ (1 - pf)(3CE + MB)

= PS(l) + pf(PI + 3.5CE + MB) + (1 - pf)(3CE + MB)
= PS0

+ lPS1
+ pf(PI + 3.5CE + MB) + (1 - pf)(3CE + MB)

Figure 5: A description of the menu search task and the associated
performance time. The response component of the task is described by
lines L2 to L17. The ‘f’ and ‘j’ letters appear with equal probabilities (i.e.,
.5). A response involving either the ‘f’ or ‘j’ key takes one of two routes: a)
positive test for presence of ‘f’ character first (L4 to L7) or b) negative test
for presence of ‘f’ and then a positive test for presence of ‘j’ (L4, L8 to L12).
pf is the probability of the search item being on the menu while (1 - pf) is
the probability of the search item not being on the menu. There are two
routes for determining the correct response: a) positive test for presence of
menu item (L2 to L13) or b) negative test for presence of menu item and
then positive test for absence of menu item (L2, L14 to L17). pf is 1 for
both scenario conditions of the locality experiment. In the non-locality
experiment, pf is .75 for the mild non-locality condition and .5 for the
strong non-locality condition.

The response time is made up of two component response times; one for each
of the two selection schemes. The first selection scheme is used when the search
item is on the menu and the subject must press either the ‘f’ or ‘j’ key, whichever
appears next to the search item. The performance time is PI + 3.5CE + MB. The
second selection scheme is used when a search item is not on the menu and the
subject must press the ‘space bar’. This performance time is 3CE + MB.

All subjects are familiar with the keyboard so MB is equivalent to the motor
processor cycle time – 70 msecs. Similarly, one perceptual processor cycle, PI =
100 msecs., is needed to notice the letter delimiting the target. Finally, each men-
tal execution step involves one basic cognitive cycle CE = 70 msecs.
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The resulting response time is 420 msecs when the search item appears on
the menu and 280 msecs when the search item does not appear on the menu.
Table 6 lists the aggregate time, the response time, and the pure menu search
time for each scenario condition in each of the experiments.

Concluding Remarks
Our experiment to estimate the menu search operator considered visual

search performance with a menu organized in a least-recently used (LRU for
short) order; the top-most menu item is the most recently referenced command
while the bottom-most menu item is less recently referenced. Menu references in
the experiment exhibited either locality or non-locality behaviours. Results reveal
that menu search times are approximated by a linear function of the serial posi-
tion of the search item in the menu.

Because we did not run subjects for all combinations of the two scenario con-
ditions in the locality case with the two scenario conditions in the non-locality
case, we cannot make a statistical comparison between the results of the locality
and non-locality cases. However, an informal comparison of the menu search rates
for the locality and non-locality case reveals nearly identical values. Any differ-
ences in menu search times within the two scenario conditions of the locality and
non-locality cases are attributed to nuances in the particular scenarios resulting in
cognitive operators of different durations [Chase, 1986].

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Aggregate Response Pure Search

Time Time TimeExperiment Scenario
(msecs.) (msecs.) (msecs.)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Small
Locality Set 1090 420 670 ± 110 l

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Large

Locality Set 1120 420 700 ± 110 l
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Locality

Mean 1110 420 690 ± 110 liiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Mild

Non-Locality 1180 380 800 ± 120 l
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Strong
Non-Locality 1070 320 750 ± 120 l

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Non-Locality

Mean 1130 350 780 ± 120 liiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
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c
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c
c
c
c
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c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 6: The Aggregate Time from Table 5, the response time, and the
pure search time associated with each scenario condition of each
experiment and the average case.
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Appendix E

Task Descriptions for Proposed Designs

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Command Feature
!! – Repeat the Most Recent Command

CM Recency("Command Line")
CM Get-!! (<!!>)
CE Initiate (<!>)
MK Key (<!>)
CE Initiate (<!>)
MK Key (<!>)
CE Initiate (<RETURN>)
MK Key (<RETURN>)

CM + CM + CE + MK + CE + MK + CE + MK

2CM + 3CE + 3MK

Assumptions:
(1) Recency("Command Line") performed in a generic memory retrieval operator

cycle time.
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!name – Repeat Most Recent Command with Given Name

CM Get-! (<!>)
CE Initiate (<!>)
MK Key (<!>)
CE Command-Name ← Get-Name("Command Name")

Count ← 1
REPEAT BEGIN

CE Initiate (Command-Name[Count])
MK Key (Command-Name[Count])

Count ← Count + 1
UNTIL Is-Equal?(Count, n

hh
0)

CE IF-SUCCEEDED Is-Equal? (Count, n
hh

0) THEN BEGIN
CE Initiate (<RETURN>)
MK Key (<RETURN>)

END

CM + CE + MK + CE + n
hh

0(CE + MK) + CE + CE + MK

CM + (n
hh

0 + 4)CE + (n
hh

0 + 2)MK

Assumptions:
(1) No memory retrieval required to Get-Name("Command Name") because the

command is in a user’s working memory, just a mental step to obtain the com-
mand name.

(2) n
hh

0 is the average length of the command name.



Appendix E: Task Descriptions for Proposed Designs 141hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

!number – Repeat Command with Given Number

CM Number ← Get-Number("Command Line")
CM Get-!n (<!n>)
CE Initiate (<!>)
MK Key (<!>)
CE Initiate (Number[First-Digit])
MK Key (Number[First-Digit])
CE Initiate (Number[Second-Digit])
MK Key (Number[Second-Digit])
CE Initiate (Number[Third-Digit])
MK Key (Number[Third-Digit])
CE Initiate (<RETURN>)
MK Key (<RETURN>)

CM + CM + CE + MK + 3(CE + MK) + CE + MK

2CM + 5CE + 5MK

Assumptions:
(1) Users retain an association between the command and its number. Therefore,

to recall the number, users retrieve the association.
(2) The most optimal method was selected, associating number with command,

rather than other methods which require significantly more steps. For exam-
ple, users can find the number by requesting a listing of their history list,
scanning the list to find the command, and then noting the associated
number.

(3) A typical session in which lots of work is being done would involve 100 to 999
commands. Thus, on the average, there are 3 digits to a command.
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!?argument – Repeat Most Recent Command with Given Argument

CM Get-!? (<!?>)
CE Initiate (<!>)
MK Key (<!>)
CE Initiate (<?>)
MK Key (<?>)
CM Get-One-Argument ("Argument")

Count ← 1
REPEAT BEGIN

CE Initiate (Argument[Count])
MK Key (Argument[Count])

Count ← Count + 1
UNTIL Is-Equal?(Count, n

hh
A)

CE IF-SUCCEEDED Is-Equal? (Count, n
hh

A) THEN BEGIN
CE Initiate (<RETURN>)
MK Key (<RETURN>)

END

CM + CE + MK + CE + MK + CM + n
hh

A(CE + MK) + CE + CE + MK

2CM + (n
hh

A + 4)CE + (n
hh

A + 3)MK

Assumptions:
(1) A mental retrieval is required to determine a suitable argument in the com-

mand which will retrieve the most recent copy of the desired command.
(2) The whole argument must be provided and not a substring of it.

(3) n
hh

A is the average length of a command’s argument.
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History Menu
Popup – Menu Appear on User Request

CM Get-PopUpMenu (<MOUSE>)
CE Initiate (<MOUSE>)
MH Home (<MOUSE>)
CE Initiate (<DRAG>)
MDM

(l)Drag ("Item at Position l")
S Wait-System-Response(<MENU>)
PS(l) Match ("Item at Position l")
CE Initiate (<KEYBOARD>)
MH Home (<KEYBOARD>)

CM + CE + MH + CE +
l =1
Σ
8

plMDM
(l) + S +

l =1
Σ
8

plPS(l) + CE + MH

CM + 2MH + 3CE + S +
l =1
Σ
8

pl(PS(l) + MDM
(l))

Assumptions:
(1) In estimates of Drag("Item at Position l"), the time takes into account the but-

ton down to cause menu to appear, drag through to the desired item, and then
release of button to make selection.
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Static – Menu Remains on Screen

CM Get-StaticMenu (<MOUSE>)
PE Eye-Move (<MENU>)
PS(l) Match ("Item at position l")
CE Initiate (<MOUSE>)
MH Home (<MOUSE>)
CE Initiate (<POINT>)
MPM

(l) Point ("Item at Position l")
CE Initiate (<KEYBOARD>)
MH Home (<KEYBOARD>)

CM + PE +
l =1
Σ
8

plPS(l) + CE + MH + CE +
l =1
Σ
8

plMPM
(l) + CE + MH

CM + 2MH + 3CE + PE +
l =1
Σ
8

pl(PS(l) + MPM
(l))

Assumptions:
(1) In estimates of Point("Item at Position l"), the movement time takes into

account the time to get to the desired item, and a button down and up for the
selection.

(2) To find the static menu, users must first move their eyes to region where the
static menu is. PE is 230 msecs which represents a typical eye movement
value.

(3) No system time because menu remains on the screen.
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Step Buffer
Single Step – Visually Examine Each Item Individually

CM Get-StepMenu (<STEP MENU>)
PS0

Prep-Search (<STEP MENU>)
REPEAT BEGIN

CE Initiate (<STEP MENU>)
MK Key (<STEP MENU>)
S Wait-System-Response(<STEP MENU>)
PI Command-Line ← Perceive-Text ("Command Line")
PS1

Match-Result ← Match (Command-Line)
UNTIL Found? (Match-Result)

CE IF-SUCCEEDED Found? (Match-Result) THEN BEGIN
CE Initiate (<RETURN>)
MK Key (<RETURN>)

END

CM + PS0
+

l =1
Σ
8

lpl(CE + MK + S + PI + PS1
) + CE + CE + MK

CM + PS0
+

l =1
Σ
8

lpl(S + PI + PS1
) + (

l =1
Σ
8

lpl + 2)CE + (
l =1
Σ
8

lpl + 1)MK

Assumptions:
(1) <STEP MENU> key is a cursor key available on the keyboard. The time to press

this key is equivalent to the time to press any other key on the keyboard, MK.
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Recall & Step – Recall How Recent and Step Right to It

CM Recency("Command Line")
CM Get-StepMenu (<STEP MENU>)
PS0

Prep-Search (<STEP MENU>)
Count ← 1
REPEAT BEGIN

CE Initiate (<STEP MENU>)
MK Key (<STEP MENU>)

Count ← Count + 1
UNTIL Is-Equal? (Count, l)

CE IF-SUCCEEDED Is-Equal? (Count, l) THEN BEGIN
S Wait-System-Response(<STEP MENU>)
PI Command-Line ← Perceive-Text ("Command Line")
PS1

Match-Result ← Match (Command-Line)
CE IF-SUCCEEDED Found? (Match-Result) THEN BEGIN
CE Initiate (<RETURN>)
MK Key (<RETURN>)

END
END

CM + CM + PS0
+

l =1
Σ
8

lpl(CE + MK) + CE + S + PI + PS1
+ CE + CE + MK

2CM + PS0
+ PS1

+ S + PI + (
l =1
Σ
8

lpl + 3)CE + (
l =1
Σ
8

lpl + 1)MK

Assumptions:
(1) Recency("Command Line") performed in a generic memory retrieval operator

cycle time.
(2) <STEP MENU> key is a cursor key available on the keyboard. The time to press

this key is equivalent to the time to press any other key on the keyboard, MK.



Appendix E: Task Descriptions for Proposed Designs 147hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

History Completion on Command Name

CM Get-StepMenu (<ESC>)
CE Command-Name ← Get-Name("Command Name")

Count ← 1
REPEAT BEGIN

CE Initiate (Command-Name[Count])
MK Key (Command-Name[Count])

Count ← Count + 1
UNTIL Is-Equal?(Count, n

hh
0)

CE IF-SUCCEEDED Is-Equal? (Count, n
hh

0) THEN BEGIN
REPEAT BEGIN

CE Initiate (<ESC>)
MK Key (<ESC>)
S Wait-System-Response(<ESC>)
PI Command-Line ← Perceive-Text ("Command Line")
PS1

Match-Result ← Match (Command-Line)
UNTIL Found? (Match-Result)

CE IF-SUCCEEDED Found? (Match-Result) THEN BEGIN
CE Initiate (<RETURN>)
MK Key (<RETURN>)

END
END

CE + n
hh

0(CE + MK) + CE + CM + e(CE + MK + S + PI + PS1
) + CE + CE + MK

(n
hh

0 + 4)CE + (n
hh

0 + 1)MK + CM + e(CE + MK + S + PI + PS1
)

CM + e(S + PI + PS1
) + (n

hh
0 + e + 4)CE + (n

hh
0 + e + 1)MK

Assumptions:
(1) <ESC> key is a cursor key available on the keyboard. The time to press this

key is equivalent to the time to press any other key on the keyboard, MK.
(2) e items are assumed to be examined.
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Typing

CE Command-Name ← Get-Name("Command Name")
Count ← 1
REPEAT BEGIN

CE Initiate (Command-Name[Count])
MK Key (Command-Name[Count])

Count ← Count + 1
UNTIL Is-Equal?(Count, n

hh
0)

CE IF-SUCCEEDED Is-Equal? (Count, n
hh

0) THEN BEGIN
CE Argument ← Get-Next-Word ("First Argument")
CE IF-SUCCEEDED An-Argument? (Argument) THEN BEGIN

REPEAT BEGIN
CE Initiate (<SPACE>)
MK Key (<SPACE>)

Count ← 1
REPEAT BEGIN

CE Initiate (Argument[Count])
MK Key (Argument[Count])

Count ← Count + 1
UNTIL Is-Equal?(Count, n

hh
A)

CE IF-SUCCEEDED Is-Equal? (Count, n
hh

A) THEN BEGIN
A ← A + 1

END
CE Argument ← Get-Next-Word ("Next Argument")

UNTIL No-Argument? (Argument)
CE IF-SUCCEEDED No-Argument? (Argument) THEN BEGIN
CE Initiate (<RETURN>)
MK Key (<RETURN>)

END
END

CE ELSE IF-SUCCEEDED No-Argument? (Argument) THEN BEGIN
CE Initiate (<RETURN>)
MK Key (<RETURN>)

END
END

CE + n
hh

0(CE + MK) + CE + CE + CE + pa(CE + CE + MK) +
(1 - pa)(a(CE + MK + n

hh
A(CE + MK) + CE + CE) + CE + CE + MK)

4CE + n
hh

0(CE + MK) + 2CE + MK + a(1 - pa)(3CE + MK + n
hh

A(CE + MK))

(6 + n
hh

0)CE + (1 + n
hh

0)MK + a(1 - pa)((3 + n
hh

A)CE + (1 + n
hh

A)MK)
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Assumptions:
(1) No mental retrieval operator is required in this task as the command is in a

user’s working memory.

(2) n
hh

0 is the average command name length.

(3) n
hh

A is the average command argument length.
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Appendix F

Task Descriptions for
Experimental Tasks

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Recall By Argument

PI Task ← Perceive-Task ("Task Request")
CCRT ChoiceReactionTime(Task)
CM Get-!? (<!?>)
CE Initiate (<!>)
MK Key (<!>)
CE Initiate (<?>)
MK Key (<?>)
CM Argument ← Get-One-Argument("Argument")

Count ← 1
REPEAT BEGIN

CE Initiate (Argument[Count])
MK Key (Argument[Count])

Count ← Count + 1
UNTIL Is-Equal?(Count, nA)

CE IF-SUCCEEDED Is-Equal? (Count, nA) THEN BEGIN
CE Initiate (<RETURN>)
MK Key (<RETURN>)

END

PI + CCRT + CM + CE + MK + CE + MK + CM + nA(CE + MK) + 2CE + MK

PI + CCRT + 2CM + (nA + 4)CE + (nA + 3)MK
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Assumptions:
(1) A mental retrieval is required to determine a suitable argument in the com-

mand which will retrieve the most recent copy of the desired command.
(2) The whole argument must be provided and not a substring of it.
(3) nA is the length of a command’s argument.
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Popup Menu

PI Task ← Perceive-Task ("Task Request")
CCRT ChoiceReactionTime(Task)
CM Get-PopUpMenu (<MOUSE>)
CE Initiate (<MOUSE>)
MH Home (<MOUSE>)
CE Initiate (<DRAG>)
MDM

(l)Drag ("Matching Item")
S Wait-System-Response(<MENU>)
PS(l) Match ("Item at Position l")

PI + CCRT + CM + CE + MH + CE + MDM
(l) + S + PS(l)

PI + CCRT + CM + 2CE + MH + MDM
(l) + S + PS(l)

Assumptions:
(1) In estimates of Drag("Item at Position l"), the time takes into account the but-

ton down to cause menu to appear, drag through to the desired item, and then
release of button to make selection.



154 Appendix F: Task Descriptions for Experimental Taskshhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Single Step Buffer

PI Task ← Perceive-Task ("Task Request")
CCRT ChoiceReactionTime(Task)
CM Get-StepMenu (<STEP MENU>)
PS0

Prep-Search (<STEP MENU>)
REPEAT BEGIN

CE Initiate (<STEP MENU>)
MB Key (<STEP MENU>)
PI Command-Line ← Perceive-Text ("Command Line")
PS1

Match-Result ← Match (Command-Line)
UNTIL Found? (Match-Result)

CE IF-SUCCEEDED Found? (Match-Result) THEN BEGIN
CE Initiate (<RETURN>)
MK Key (<RETURN>)

END

PI + CCRT + CM + PS0
+ l(CE + MB + PI + PS1

) + CE + CE + MK

PI + CCRT + CM + PS0
+ lPS1

+ lPI + (l + 2)CE + lMB + MK

PI + CCRT + CM + PS(l) + lPI + (l + 2)CE + lMB + MK

Assumptions:
(1) In the experiment, the subject’s hands were already positioned over the keys.

The keyboard interaction is limited primarily to pressing the <STEP MENU> key.
Thus, the time to press the <STEP MENU> key is the time to press a button, MB.

(2) However, the time to press the <RETURN> key is equivalent to the time to per-
form a keystroke operator, MK
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Typing

PI Task ← Perceive-Task ("Task Request")
CCRT ChoiceReactionTime(Task)
CE Command-Name ← Get-Name("Command Name")

Count ← 1
REPEAT BEGIN

CE Initiate (Command-Name[Count])
MK Key (Command-Name[Count])

Count ← Count + 1
UNTIL Is-Equal?(Count, n0)

CE IF-SUCCEEDED Is-Equal? (Count, m) THEN BEGIN
A ← 1
REPEAT BEGIN

CE Initiate (<SPACE>)
MK Key (<SPACE>)
CE Argument ← Get-Argument ("Next Argument")

Count ← 1
REPEAT BEGIN

CE Initiate (Argument[Count])
MK Key (Argument[Count])

Count ← Count + 1
UNTIL Is-Equal?(Count, nA)

CE IF-SUCCEEDED Is-Equal? (Count, nA) THEN BEGIN
A ← A + 1

END
UNTIL Is-Greater? (A, a)

CE IF-SUCCEEDED Is-Greater? (A, a) THEN BEGIN
CE Initiate (<RETURN>)
MK Key (<RETURN>)

END
END

PI + CCRT + CE + n0(CE + MK) + CE +

(
A =1
Σ
a

(CE + MK + CE + nA(CE + MK) + CE) + CE + CE + MK)

PI + CCRT + (1 + n0 + 1 + a + a +
A =1
Σ
a

nA + a + 2)CE +

(n0 + a +
A =1
Σ
a

nA + 1)MK

PI + CCRT + (4 + 3a +
A =0
Σ
a

nA)CE + (1 + a +
A =0
Σ
a

nA)MK
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Assumptions:
(1) n0 is the length of a command name.
(2) nA is the length of a command argument.
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